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Abstract— This paper deals with visually guided grasping
of unmodeled objects for robots which exhibit an adaptive
behavior based on their previous experiences. Nine features
are proposed to characterize three-finger grasps. They are
computed from the object image and the kinematics of
the hand. Real experiments on a humanoid robot with
a Barrett hand are carried out to provide experimental
data. This data is employed by a classification strategy,
based on the k-nearest neighbour estimation rule, to predict
the reliability of a grasp configuration in terms of five
different performance classes. Prediction results suggest the
methodology is adequate.

I. INTRODUCTION

For a service robot to be truly autonomous in every-day
human environments, it must be capable of performing a
set of basic fundamental tasks in a robust and adaptive
way, so that more complex behaviors can be built on top of
them. This paper addresses one of such fundamental tasks;
namely, vision-based grasping of unmodeled objects.

Our emphasis has been on exploiting the use of on-
line visual sensing, in contrast to previous approaches
which typically assume that a parameterized model of the
entire object is known before grasp planning begins. When
such a model exists, there is a well-founded corpus of
analytical methods for grasp analysis and synthesis that
are computationally expensive but could be applied off-
line [1]. Even if the model is not previously available, such
analytical methods could be applied after an exhaustive
reconstruction phase from the visual input. However, this
is not only too costly in terms of sensing and computation
time to be feasible for real-world applications, but also in
disagreement with neurophysiological findings [11].

Our challenge is, then, to develop a strategy suitable
to compute and execute a reliable grasp for unmodeled
objects presented in an unstructured manner by using
only visual sensing as input and keeping computation to
a minimum in order to achieve real-time performance.
Moreover, the robot should learn and adapt its behavior
by using its previous experience. There are two key issues
in this formulation: the first one is how to define the
intrinsic features that can be computed from an object
image and that would ideally be necessary and sufficient

to completely characterize a particular grip. The second
concerns a procedure to relate those features to the nature
of a feasible grasp in order to predict the possible outcome
of its execution.

In this paper we propose such a set of features that
characterize a three-finger grasp (Sec. II). We devise a
strategy within this feature space so as to predict the
success of a particular grasp configuration (Sec. IV).
These predictions are based on real data gathered from
experiments conducted on a humanoid robot hand (Sec.
III-A). Our results (Sec. V) suggest that our methodo-
logy is good enough to predict the reliability of a grasp
within a reasonable error margin. An important additional
contribution is the fact that we use both features that are
dependent on the object image and also on the particular
kinematic configuration of the hand, whereas previous
work described in the literature ignores the hand geometry
by considering only the object geometry.

II. VISION-BASED GRASP FEATURES

In the particular case of planar grasp determination,
i.e. for objects resulting from the extrusion of a planar
shape, we showed in [8], [9], how vision information can
be used to select a set of feasible grips that meet certain
stability criteria, including the particular kinematics of the
three-fingered Barrett hand [4]. This approach typically
yields a large set of triplets of contact points, out of the
infinite geometric possibilities. However, only one grip
can be finally executed, and this choice can be mediated
by further considerations such as the particular robot
intentions, the task to be performed, additional reachability
constraints, etc. An adequate characterization of the grips
is called for in order to be able to predict their reliability
and adjust practical aspects of the manipulation activity
(e.g.: arm accelerations torques, etc) accordingly during
the execution of the grasp and subsequent movements.
In this section we first describe some basic descriptors
(see [8], [9] for more details) and then introduce the nine
features used to characterize a grasp configuration. Fig. 1
shows a schematic representation of the kinematics of the
Barrett hand.



Fig. 1. Barrett hand kinematics. The hand has a thumb and two opposing
fingers that spread symmetrically along the axis defined by the thumb.

A. Grasp descriptors

• Grasp regions. The portions of the object contour
where the three fingers are placed. They are modeled
as short straight segments and described by the
coordinates of their extreme points.

• Contact points. The three points where the fingers are
supposed to touch the object, each lying on one of
the three grasp regions (P1, P2, P3).

• Force directions. The real force directions F1, F2, F3

exerted by the fingers of the Barrett hand are
usually different from the ideal normal directions
N1, N2, N3.

• Force focus. The intersection of the directions of the
real forces CC .

• Finger extensions. The opening of the fingers (ei in
Fig. 1 and 3).

• Spread angle. The spread angle (θ in Fig. 1) of the
opposing fingers.

B. Feature definitions

The previous descriptors are somehow low level. Now,
we propose nine high-level features computed from the
grip descriptors that try to measure different properties of
each grip. Note that the inputs for their computation come
only from the object contour extracted from the image
along with the knowledge about the hand geometry.

All features have been designed to have similar ranges.
More precisely, they are defined so as the best grips
correspond with the lower values, with a theoretical best
value of 0. Also, a preprocessing stage is performed based
on physical and numerical considerations. This consists in
a normalization dependent on the distributions and ranges
of each feature, so that a middle quality grip for a certain
feature is expected to have a quality value of 1. More
details can be found in [2].

All variables used in the different features are indicated
in Fig. 2, 3 and 4.
1. FORCE LINE: This feature [9] considers the deviations
δi of the real forces Fi from the ideal condition of being
perpendicular to the contour at the grasp points. Low
deviations indicate low risk of instability: q1 = 4

3 (δ21 +

Fig. 2. Geometrical representation of the variables involved in the
computation of features 1 (δ1, δ2, and δ3); feature 2 (D, CC , and CG);
and feature 5 (DC ).

δ22 + δ23)/arctan2(µ). µ is an estimation of the friction
coefficient.
2. REAL FOCUS DEVIATION: This feature measures the
distance D between the focus of the ideal forces CG and
the real focus of the grip CC . The feature is computed
as q2 = 2D

ηµ where η is the maximum possible finger
extension.
3. FINGER EXTENSION: If the fingers contact the object
with different extensions, they probably exert a torque out
of the horizontal plane of the object. This feature estimates
the risk given by the differences in the finger extensions:
q3 = 1

η2 ((e1 − e2)
2 + (e2 − e3)

2 + (e3 − e1)
2).

4. FINGER SPREAD: An equilibrated grip should have its
three forces roughly equally separated by 120o angles
[10]. This feature measures the equilibrium of the grasps.
q4 = (π

6 /(
π
2 − θ)) − 1 for θ > π

3 or else 0, where θ is
the opening angle of the fingers of the Barrett hand in
opposition to the thumb.
5. REAL FOCUS CENTERING: This feature aims to measure
the effect of gravitational and inertial forces endorsing
grasps with short distances between the real focus CC and
the center of mass of the object C. The feature definition
is q5 = 4DC

ML+mL
, where ML and mL are the sizes of the

major and minor inertia axes computed from the shape.
6. FINGER LIMIT: When trying to grip large objects, there
is a limit in the extension of the fingers . Due to the way
the Barrett Hand grips objects, there is a finger extension
value that, if overcome, causes the grip to shift from a
fingertip grip to a fingerside grip on the part edge, which
is more risky and less stable although still possible (see
Fig. 3). Therefore, a threshold on the maximum optimal
finger extension ε has been set in order to avoid marginal
contacts: q6 = ε1 + ε2 + ε3 where εi = ( ei−η

λ )2 if ei > η,
else 0. The threshold λ is an estimation of the positioning
error.
7. POINT ARRANGEMENT: Similarly to [5], [10], we as-
sess the likeness of the grasp triangle to an equilateral one
to obtain better grip balance. Each angle is compared with



Fig. 3. Geometrical representation of the variables involved in the
computation of features 3 (e1, e2, and e3); feature 4 ( θ); and feature
6 (η).

a 60o (π/3 rad) angle typical of an equilateral triangle:
q7 = 3

2π (|α− π
3 | + |β − π

3 | + |γ − π
3 |).

8. TRIANGLE SIZE: The larger the area of the grasp
triangle, the more stable a grip is [5]. The quality measure
is q8 = A

4AS2

, where AS2 is the area of the grasp triangle,
and A is the area of the object.
9. CONTACT CURVATURE: A concave surface is a better
place to put a finger for grasping purposes than a convex
one [7]. This feature takes into account the curvature of
the three grasp zones. All the points closer to the grasp
point than the positioning error threshold are considered,
and their local curvature values are summed. The sum is
weighted by the actual distance of each point from the
contact point, in a way that the more we approach the
expected point of contact the more the local curvature
value becomes influent on the total. The curvature ρ is
positive for concavities, negative for convexities and 0 for
planar zones. We define the overall grip quality as: q9 =
3 ∗ψ− (ρ1 +ρ2 +ρ3), where ψ is the curvature threshold
value, that is the best (most concave) possible curvature
allowed for a contact point. ρi =

∑k
j=−k(1 − |j|

k ) ∗ ρij ,
with ρij local curvature of a point that is at distance j
along the contour from the point i. In practice the distance
in measured in discrete steps. The maximum distance k
depends on the positioning error λ.

III. METHODOLOGY

In this section we describe the system setup, and the
protocol followed to gather the experimental data.

A. Experimental Setup: the UMass Torso

Our experiments have been implemented using the
UMass Torso. This humanoid robot (Fig. 5) consists of
two Whole Arm Manipulators from Barrett Technologies,
two Barrett hands with tactile sensors and a BiSight stereo
head.

The stereo vision system estimates the two-dimensional
location of the target object on the table, and provides a

Fig. 4. Geometrical representation of the variables involved in the
computation of features 7 (α, β and γ); 8; and 9 (ρij ).

monocular image for surface curvature analysis (see [9] for
more details). Once a grip is selected (consisting of contact
locations and a hand posture), the hand is preshaped and
positioned above the object. It moves down, closes the
fingers so that the object is grasped, lifted and transported
to a designated location.

B. Experimental protocol

A set of real objects has been built for this experiment.
They are planar objects with a constant height made of an
homogeneous material. Moreover, the colors of the objects
have been selected to simplify the image processing.
An important feature is that their shape is unknown for
the system. The only programmed assumptions about the
objects is that they are planar. The rest of the information,
in particular the shape and location, is obtained from the
images.

Moreover, in order to study the grasping performances
in different circumstances several characteristics of the
environment are tested. These are the weight of the objects
and the friction coefficient. Two qualitative categories
for each of both conditions are distinguished: heavy and
light objects, and high and low friction. The different
weight is obtained with two different object sets similar
in appearance, but made of different material. Different
contact friction is achieved by using a latex fingertip to
envelope the fingers.

In order to perform the experiments, a single object is
placed on a table within the robot workspace. Using the
stereo-visual information the robot locates the object and
computes a set of feasible grasp configurations. One of
the configurations is selected, either manually by a human
operator, or automatically by the robot, and executed.

If the robot has been able to lift the object safely, a set of
stability tests are applied in sequence. These are aimed at
measuring the stability of the current grasp. They consist
of three consecutive shaking movements of the hand which
are executed with an increasing acceleration. After each



Fig. 5. The UMass Torso. A humanoid robotic system at
the Laboratory for Perceptual Robotics in the University of
Massachusetts.

movement the tactile sensors are used to check whether
the object has been dropped off.

This protocol provides us with a qualitative measure of
the success of a grasp. Thus, an experiment may result in
five different reliability classes: E indicates that the system
was not able of lifting the object at all; D, C, B indicate
that the object was dropped, respectively, during the first,
second, or third series of shaking movements; finally A
means the object did not fall and was returned successfully
to its initial position on the table. Hence, we define Ω =
{A,B,C,D,E} as the set of reliability classes.

The number of feasible grips that are computed for
a single object is usually large, varying from several
dozens to more than one hundred. In addition a particular
execution of a grasp configuration can be influenced by
many unpredictable factors. To avoid this problem, each
configuration is executed a sufficiently large number of
times, by varying the location and orientation in the pre-
sentation of the object. In this way, statistically significant
conclusions can be reached.

Nevertheless, this repetition could lead to a non practi-
cal number of executions, so for each object only a few
configurations are selected to be executed. This selection
consist of the most representative configurations of each
object. Each configuration is executed 12 times, 4 times
for three different orientations of the object.

IV. PREDICTION STRATEGIES

The data collected during the experiments comprises
a large amount of information. Several analyses can be
carried out over this data, specially those regarding the
appropriateness and usefulness of the different features.
Here, however, we are more interested in the predictive
capabilities that can be inferred from these data and the
methods that can make the best use of it.

In theoretical terms a data set is composed of N
executed triplets. Each grip gi, i = 1 . . . N is described by
the nine visual features q1, . . . q9 introduced in subsection
II-B. The space QS is formed by the ranges of the values

of the features. Moreover, we have also recorded the
performance of the grip and have assigned it to a class
ωi ∈ Ω for each gi.

KNN classification rule

A prediction function has the form F (g) = ω̄ where g ∈
QS and ω̄ ∈ Ω. There exists a wide bibliography on the
building of such functions based on the Bayesian decision
theory[3]. In this paper we have chosen the approach of the
nonparametric techniques in particular the voting k-nearest
neighbor (KNN) rule [6], [3] for modeling this function.
The nonparametric techniques do not assume any density
distribution of the features and the classes. To predict the
class of a query point gq , the KNN rule counts the K-
nearest neighbors and choses the class that most often
appears, the most voted.

In our implementation we have introduced some mod-
ifications to the basic schema. First we use the euclidean
metric for measuring the distance between the points in
the QS . We weighted the contribution of each of the KNN
points according to its distance to the query point. This
gives more importance to the closer points. The kernel
function used is K(d) = 1

1+(d/T ) , where T is an adjustable
parameter, and d is the distance.

We define knn(gq) = {(gi, ωi), i = 1 . . . k, gi ∈
QS , ωiinΩ} as the k closest points to gq and di its corre-
sponding distances from gq . The probability corresponding
to a class ω̄ are computed using this expression:

P (ω̄, gq) =
∑

gi∈KNN(gq)
ωi=ω̄

K(di)∑
gj∈KNN(gq)K(dj)

Function P is also an expression of the posterior prob-
ability [6]. Our predictor would be defined as F (gq) =
ω ∈ Ω,MAX{P (ω, gq)}.

Error and risk functions

Performance of classification methods is measured in
terms of successful or wrong classifications. Our classes
have an important particularity, their qualitative order (i.e.:
class A means a higher stability for a grip than any other
class). Having this in mind, we try not to penalize in the
same amount when the failure is qualitatively smaller (i.e.:
predicting B when the outcome is C), than larger (i.e.:
predicting A when the outcome is D). For this we build
the error function E(ω̄, ω),being ω̄, ω ∈ Ω, where ω̄ is
the predicted outcome and ω the real one. This is easily
implemented with a table (see practical cases in Table 2).

A step further is the definition of the risk function:
R(ω̄, gq) =

∑
ω∈Ω P (ω̄)E(ω̄, ω), where ω̄ ∈ Ω. The class

ω ∈ Ω selected for the prediction is the one that minimizes
the risk, F (gq) = ω ∈ Ω,MIN{R(ω, gq)}. Using the risk
function makes it possible to introduce in the prediction
step the qualitative ordering of the problem classes.



Fig. 6. The four objects used in the experiments

TABLE I

SAMPLE DATA SETS

E D C B A Total
Light 102 84 33 27 18 262
Low 38.6% 31.8% 12.5% 10.2% 6.8% (22)
Light 51 97 56 38 118 360
High 14.2% 26.9% 15.6% 10.6% 32.8% (34)
Heavy 95 92 29 2 2 220
High 43.1% 41.8% 13.2% 0.9% 0.9% (23)

Sample distributions among classes for the different data sets. The figures
in brackets in the “Total” column indicates the number of different
configurations really tested.

V. RESULTS AND DISCUSSION

A series of experiments where done following the
experimental protocol described in section III-B. Three
different combinations of physical properties were tested:
light objects and low friction (light/low), heavy objects
and high friction (heavy/high); and light objects and high
friction (light/high). A set of four different objects were
used (fig, 6). Table I shows the number of different grips
executed for each case, and the percentages of grips that
resulted in each class of Ω. Note that the total number of
grips results from the repetition of a smaller number of
configurations.

Two basic questions need to be answered about the
prediction capabilities of the rule described in section IV:
first, is it able to generalize across different objects, and
second, did we have enough data to properly construct
a function ? To answer these questions we have devel-
oped a cross-validation method named leave-one-grasp-
out validation similar to the well known leave-one-out
validation and n-fold cross-validation [3]. This consist of
the following steps: 1) given the whole data set, remove
all the points of a particular grasp configuration and use
this subset as validation set; 2) use the remaining samples
for predicting the outcomes of the validation set and
compute the mean error; 3) repeat steps 1) and 2) for
all configurations. The validation error will be the mean
error of the iterations of step 2). The reason for removing
all the points of a configuration from the data set is that
all the points of a particular configuration are very close
in the QS and the KNN rule would be affected by this
points instead of using points of unrelated configurations,
farther in QS .

Moreover, we are also interested in the sensitivity of

TABLE II

ERROR TABLES

Criterion 2a
E D C B A

E 0.0 0.5 1.0 1.0 1.0
D 1.0 0.0 0.5 1.0 1.0
C 1.0 1.0 0.0 0.5 1.0
B 1.0 1.0 1.0 0.0 0.5
A 1.0 1.0 1.0 1.0 0.0

Criterion 2b
E D C B A

E 0.0 0.0 1.0 1.0 1.0
D 0.0 0.0 1.0 1.0 1.0
C 1.0 1.0 0.0 0.0 0.0
B 1.0 1.0 0.0 0.0 0.0
A 1.0 1.0 0.0 0.0 0.0

Criterion 2c
E D C B A

E 0.0 0.00 0.25 0.50 0.75
D 0.25 0.00 0.00 0.25 0.50
C 0.50 0.25 0.00 0.00 0.25
B 0.75 0.50 0.25 0.00 0.00
A 1.00 0.75 0.50 0.25 0.00

The rows indicate the predicted outcome, and the columns the real
outcome. An error 1.0 indicates a failure, and 0.0 a successful prediction.

the error with respect to the size of the data set. We can
analyze it by modifying the second step. Instead of using
the whole remaining data set, we chose randomly a set
of given size. This introduces a random factor, and to
reduce the effect of this randomness we repeat this step a
sufficiently large number of times.

We have defined three error tables (see table II). The
first one 2a is quite strict. It considers as failure any wrong
prediction. The only exception is that it considers half a
failure a prediction one class lower that the real output.
This is a kind of conservative rule. The second table, 2b, is
a way of reducing the classes to two super-classes: the first
one composed of class A, B and C (reliable grasps), and
the second, D and E (unreliable). Finally, the third table
2c tries to penalize errors depending on the qualitative
distance between the predicted outcome and the real one.

The different parmeters of the knn prediction rule, K and
T for the kernel function, has been chosen using leave-
one-out validation with the full datasets minimizing the
errors.

Figure 7 shows the evolution of the prediction error for
the light-high data set using the three error schemes. The
first and most obvious observation that can be drawn from
these figures is that the error is reduced as the size of the
available data set increases. Moreover, the evolution of the
error rates depending on the table error used seems to be
equivalent, but with a different scale.

Finally Table III shows the error rates reached in the
size sensitivity experiments with the different data sets.

From a practical point of view, when performing a
strongly stochastic action like grasping an unmodeled real
object with a robotic hand, an error between two neighbor
classes can be considered acceptable, especially in the case
of a false negative. Indeed, it means that the reliability of
the grasp is only slightly better than the predicted one.
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Fig. 7. Size sensitivity validation for the data set of light objects and
high friction

This justifies the definition of criteria 2b and 2c. The
results summarized in Table 3 suggest that the expected
error rates will be around 0.25 (with error criterion 2b) or
even close to 0.1 (with criterion 2c). It must be noted
that these results have been obtained even though the
available data were far from optimal. First they were very
unequally distributed across the classes, with some classes
poorly represented. More precisely, the low-quality classes
D and E strongly prevail on the others. Second, they were
very noisy due to uncontrollable errors in sensing, image
processing and motor control.

VI. CONCLUSION

We have presented a contribution to a methodology for
computing and executing reliable grasps for unmodeled
objects using only visual sensing as input, in such a way
that the system can exhibit an incremental adaptive behav-
ior based on its previous experiences. We have proposed
a set of intrinsic features that adequately characterize a
grip and can be computed by using only the object image
and the kinematics of the hand. We have implemented a
prediction approach that uses such features to produce as
output the reliability class of the grip. Feature space data
were obtained from real experiments with a humanoid
robot. The obtained prediction results are satisfactory
enough to suggest that the methodology is adequate and
further progress should be made in this direction.
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