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ABSTRACT

We describe a method for predicting user intentions as part of
a human-robot interface. In particular, we show thatfunnels,
i.e., geometric objects that partition the input space, provide
a convenient means for discriminating individual objects and
for clustering sets of objects for hierarchical tasks. One ad-
vantage of the proposed implementation is that very few pa-
rameters need tuning, and a simple heuristic for setting initial
parameter values appears promising. We discuss the possi-
bility of adapting the user interface with machine learning
techniques, and we illustrate the approach with a humanoid
robot performing a variation of a standard peg-insertion task.
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INTRODUCTION

In this paper, we describe a novel human-robot interface that
supports both adjustable autonomy and hierarchical task se-
lection. With adjustable autonomy, e.g., [6], a computer
interface facilitates switching among a variety of control
modes ranging from full supervision to full autonomy. With
hierarchical task selection, the interface allows an operator to
easily solve a high-level task autonomously or else to guide
the robot through a sequence of lower-level subtasks that
may or may not involve autonomous control.

For example, consider a robot capable of moving objects
from one location to another. In an uncluttered environment,
the operator may indicate the task by simply pointing to the
desired object and then to the target location. But in other
situations, the human supervisor may need to interrupt this
high-level task and perform some lower-level maintenance
operation, such as obstacle avoidance. In any case, the key
challenge is that current forms of human-robot interaction
suffer from the operator’s inability to control a robot as easily
as his or her own limbs. This leads to movements that are fa-
tiguing for the operator and that fail to utilize the robot’s full

potential, especially in terms of speed. One goal of human-
robot interface design, therefore, is to shift some responsibil-
ity or “cognitive load” from human to machine.

Our current approach is to predict operator intentions based
on movement of the robot in the vicinity of key landmarks.
As a first approximation, one could simply compute the dis-
tance from the robot to each candidate landmark and then
predict that the operator’s intention is movement toward the
nearest landmark. With the proper feedback, the operator
has two strategies for adjusting his or her commandsto elicit
the desired prediction from the interface.In particular, the
operator can explicitly move the robot toward the desired
landmark or take advantage of the autonomous system af-
ter moving to a region of space where the interface easily
discriminates the target landmark from the other candidates.
As described below, the novel part of this work is the use of
funnels to enhance the discrimination capabilities of the in-
terface. Byfunnel, we mean a geometric object that forms a
decision surface in a suitable space, such as the user’s mo-
tor space or the robot’s state space. The intention is that the
funnel plays the role of a virtual landmark which is easier to
reach than its corresponding real landmark.

The use of funnels as described shortly offers a unique ap-
proach to human-robot interface design, although we are
not the first to suggest that funnels are a useful metaphor
when devising strategies for robot control. For example Bur-
ridgeet al.[2] composed a sequence of controllers where the
state of one controller converges to the basin of attraction for
the next controller, eventually leading to a goal region. In
the human-computer interaction community, spatial distor-
tions [5] are sometimes used to provide a similar effect as
a funnel. For instance,fisheye views[3] magnify a graphical
user interface in the vicinity of a cursor and compress regions
farther away. For instance, Gutwin [4] used a fisheye view
to display numerous web pages simultaneously as a tree of
small icons; when the user traversed the tree of web pages
via a mouse, the icons nearest the cursor grew continuously
toward full size.

1



FUNNELING USER INTENTIONS

One underlying assumption of this work is that landmark (or
object) locations are known—in terms of some world coor-
dinate frame as well as a relevant interface element. In this
paper we assume that a computer vision system is able to rec-
ognize objects in a scene and make the correspondence be-
tween world and image coordinates. With this information
in hand, we are then in a position to implement the funnel
interface.

In general, “funnels” can have somewhat arbitrary shape, al-
though for simplicity we consider a more prototypical hyper-
bolic profile. In particular, we represent a funnel in cylindri-
cal coordinates as

r2

a2
− (z− z0)2

b2 = 1, (1)

where r is the radius at a distancez from the end of the
“spout.” In Eq. (1), the parametera gives the minimum ra-
dius of the funnel andb determines the asymptotic radial
slope relative toa. As a simple heuristic, one can seta to
equal the object radius andb to reflect inter-object distances.
In Eq. (1),z0 is an offset parameter used to give the funnel a
cylindrical shape near the object. Specifically, we setr equal
to a wheneverz < z0 and use Eq. (1) to deriver otherwise.
Figure 1 depicts the relationship among the various parame-
ters.

As a basis for predicting operator intentions with multiple
objects, funnels yield relatively discriminating results near
the target object but lead to aliasing at greater distances. This
property is actually convenient for hierarchical tasks because
it provides a way to group nearby objects into clusters that
may be acted on as a unit. More specifically, for each object
the robot is either within the corresponding funnel or not,
and we use the termsactiveand inactive to describe these
two cases. In some situations several funnels may be ac-
tive at the same time and the corresponding objects form a
“meta-object” at a higher level of abstraction. The computer
interface can then indicate to the operator the choice of act-
ing on this meta-object or of picking a specific member of
the cluster to interact with. This scenario is made clear by
the following example.

Figure 1: Schematic of a funnel as defined in Eq. (1).

Figure 2: Teleoperation setup with (a) Dexter, the UMass
Amherst humanoid robot, (b) the workpiece with 16 bolts
arranged in four clusters, and (c) the glove input device and
orientation sensor.

EXAMPLE

As a preliminary demonstration of how funnels might be
used to predict operator intentions, we devised a variation of
a canonical peg-insertion task. Figure 2 shows the setup for
a teleoperation experiment with Dexter, the UMass Amherst
humanoid robot. The task is to engage and then tighten
each bolt fixed to a wooden stand. A glove-like input device
(model P5 from Essential Reality, Mineola, NY) was used to
specify translations of the end-effector (a cordless drill) and
an inertial orientation sensor (InertiaCube from InterSense,
Burlington, MA) was used to specify orientations. For the
particular example shown below, the operator moved toward
one of the bolts with no change in orientation.

Figure 3 shows several images from one of two cameras that
provide the operator with a three-dimensional video inter-
face. When the end-effector is far from the target bolt (up-
per panels) all 16 funnels are active and the interface makes
the trivial prediction that the user intends to interact with the
workpiece. This prediction is indicated by a circular over-
lay centered on the mean location of the bolts in the image
plane; the radius of the circle is four times the standard de-
viation of the vertical pixel locations. The middle panels in
Figure 3 illustrate that at closer distances to the target many
funnels become inactive and then the interface predicts that
the user intends to work on the upper bolt cluster. And near
the target (lower panels) only one funnel remains active and
so the interface is able to discriminate the desired bolt from
the others.

DISCUSSION

The example in Figure 3 illustrates that a hierarchical
human-robot interface is easily constructed by partitioning
Cartesian space with funnels. Although funnels as repre-
sented in Eq. (1) work quite well with this example, we an-
ticipate the need for greater flexibility when specifying the
funnel shape with other tasks. One possible variation is to
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Figure 3: Sequence of images from the user interface as
the operator guides the end-effector toward a target. The
white, circular overlay depicts the hierarchical prediction,
and the right-hand panels show the active funnels at the cor-
responding times. Funnel parameters were set toa = 0.02m,
b = 0.05m, andz0 = 0.15m

construct other kinds of funnels by union of geometric prim-
itives (e.g., spheres, polyhedra).

Another possible variation of this work is to use machine
learning techniques that adapt the interface to fit the oper-
ator’s idiosyncrasies as well as the particulars of the task.
Learning of this kind is similar tolearning from demonstra-
tion, e.g., [1], although one key difference is that learning
by demonstration typically involves a small set of trajecto-
ries demonstrated before the robot makes an attempt at solv-
ing the task. This contrasts with the ongoing involvement
of a human supervisor who adds a degree of robustness to
the learning process as well as the opportunity to learn from
new situations as they arise. Another possible use of machine
learning is to consolidate an operator’s control “knowledge”
into a machine compatible form. For instance, if expert op-
erators always approach an object from a particular direc-
tion (relative to the object) then this may be useful evidence
to bias a machine vision system searching for salient image
features.

CONCLUSIONS AND FUTURE WORK

Perhaps more important than the use of learning methods,
is future work to assess the benefits of the proposed inter-
face technique. In this paper we sketched out one particular
implementation and demonstrated the graphical display with
the robot under full supervision by the human operator. The
next logical step is to enable selection of autonomous move-
ment through the object hierarchy. A subsequent user study
will then allow us to quantify improvements in terms of exe-
cution speed, error, or progress on a parallel task.

Another key part of future work is to augment the funnels
to include additional information. As described above, fun-
nels are simply geometric objects used to carve up space into
useful regions. For an effective human-robot interface, one
must design (or learn) not only the funnel’s shape but also
the space over which it is defined. With some applications,
the space may need to account for orientation in addition to
position. Moreover, there may be circumstances where it
is helpful to mix real-valued quantities with discrete sets of
values. For example, one extra bit of memory to specify if
a bolt has already been tightened can help the interface pre-
dict whether the operator intends to run the drill in Figure 2
forward or reverse. In any case, the approach outlined in
this paper is a promising one as a general design strategy
for human-robot interaction. Moreover, we expect the many
possible variations of the basic theme to lead to opportunities
for varied applications.
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