Manipulation Gaits: Sequences of Grasp Control Tasks

Robert Platt Jr.

Andrew H. Fagg

Roderic A. Grupen

Laboratory for Perceptual Robotics
Department of Computer Science
University of Massachusetts, Amherst
{rplatt, fagg, grupen}@cs.umass.edu

Abstract

In dexterous manipulation, an object must be reconfigured
while maintaining a stable grasp. This may require that
the object be re-grasped in order to avoid finger workspace
limits. In this paper, we present a set of closed-loop con-
trollers designed to achieve force-related objectives such as
wrench closure, and show how they may be concurrently
combined. Furthermore, we show that dexterous manipu-
lation behavior may be generated by sequencing concurrent
combinations of these controllers. We show that dexterous
manipulation can be viewed as a task that is accomplished
in the context of a wrench closure constraint. We hypoth-
esize this approach can generalize to any task that must
be accomplished while maintaining a set of constraints.

1 Introduction

Many common robotics problems have a multi-objective
nature. For example, bipedal walking requires that the
robot translate while maintaining its balance. Teams of
mobile robots may be required to explore while maintain-
ing specific formation or line-of-sight constraints. In ma-
nipulation, the robot is required to achieve a particular
hand/object configuration while maintaining a grasp.

In each of these problems, the desired behavior must be
performed while maintaining a set of task-specific con-
straints. In this paper, we describe a control framework
that enables a robot to explore different behaviors with-
out violating a specified constraint. We explore this in the
context of dexterous manipulation.

Several approaches have been proposed for solving ma-
nipulation tasks using geometric primitives. In these ap-
proaches, each primitive executes a fixed, coordinated tra-
jectory in configuration space that is based on geometric
assumptions about the object and manipulator. For ex-
ample, Michelman and Allen used several primitives, in-
cluding a “log rolling” strategy to unscrew a child-proof
bottle cap [7]. Han and Trinkle identify two finger gaiting

strategies designed for a three-fingered manipulator that
require prior object knowledge [3].

Huber generalized this perspective to incorporate closed-
loop controllers in a “control basis” rather than using geo-
metric primitives [5]. Control synthesis is viewed in terms
of combinations of control objectives rather than combi-
nations of geometric artifacts. Huber showed that finger
gaiting behavior could be created by sequencing such con-
trollers and demonstrated that policies derived this way
generalize to different robots including a quadruped walk-
ing platform.

Closely related to the approach advocated in this paper is
Burridge, Rizzi, and Koditschek’s research into controller
sequencing and funneling [1]. In that work, closed-loop
controllers were sequenced in order to make the system ro-
bust in a broad region of state space. In our current work,
we combine and sequence controllers so as to maintain con-
trol within a set of constraints.

This paper describes a control basis that is appropriate for
force-based interactions using whole body contacts. We
show how the force-based controllers in this control ba-
sis may be concurrently combined to aid in robustly nav-
igating through a space of different wrench closure con-
figurations. This work is based on grasp controllers that
have equilibria in wrench closure configurations. We show
that these controllers can be used to generate manipula-
tion policies that maintain a wrench closure constraint.
This approach is demonstrated on Dexter, the UMass hu-
manoid robot.

Section 2 gives an overview of the control basis frame-
work. Section 3 describes the controllers used in this work,
and section 4 presents methods for concurrently combining
force-based controllers. Section 5 describes how manipula-
tion problems can be solved using a markov decision pro-
cess, and section 6 presents two experiments that validate
the approach on Dexter.



2 The Control Basis Approach

The control basis approach is a framework for combining
closed loop controllers in a systematic way to accomplish
a variety of different behavioral objectives. In this frame-
work, a wide variety of behavior is described by controllers
derived from a small set of potential functions. Controllers
belonging to a control basis typically implement funda-
mental behaviors related to force, motion, and kinematic
objectives.

Controllers are generated by parameterizing (binding) a
potential function ®; with a set of input resources (sen-
sors) o and output resources (effectors) 7. This binding is
denoted: ®;|7. The parameterized controller uses control
resources 7 to descend the potential function parameter-

ized by input resource o. For example, &,,] lTef descends a
motion control potential function parameterized by a tar-
get reference location. This controller moves the left hand
toward the location specified by re. f.

In this framework, we allow two or more controllers to exe-
cute concurrently in a prioritized manner. We use the term
“subject to” (“<”) to describe this combination. We say
that &g executes “subject to” ®p (s < Pp) when Py is
constrained to operate exclusively in the nullspace of ®p.
For example, we would write &, <®,, to describe a compos-
ite controller that optimizes kinematic configuration in the
nullspace of a motion objective. Similarly, a motion objec-
tive can be specified to operate in the nullspace of wrench
closure: ®,, <« ®,. This control combination moves the
arm toward a reference position while maintaining wrench
closure on an object.

Closed-loop controllers and combinations of controllers can
be sequenced to generate a variety of robot behavior. Hu-
ber showed that behavior can be explored in the context of
a Markov Decision Process (MDP) [4]. An MDP is a frame-
work for modeling stochastic control problems. There are
states and actions. Each state is paired with a set of allow-
able actions. When an action from this set executes, the
state of the system changes according to a fixed, but possi-
bly unknown, probability distribution. In the control basis
approach, an MDP models the evolution of a set of artifi-
cial potentials in the context of controller execution. For
our purposes, the state of a potential function can often
be succinctly captured by a bit that indicates whether that
function is converged or not. The state of the system is
represented as a vector of these convergence indicator bits.
One of the advantages of using an MDP is that a number
of machine learning techniques exist for finding policies
(action sequences) on-line. Reinforcement learning (RL)
is a powerful on-line control algorithm that learns through
trial-and-error [11]. Huber showed that the control basis
framework can accelerate learning times required for RL
to converge.

3 Artificial Potential Functions

In the control framework, all controllers are drawn from
a set of artificial potential functions known as a control
basis. In this paper, we focus on a control basis appropriate
for describing force-based behaviors such as grasping and
manipulation.

The grasp control artificial potential ®, descends

ew=0"T0, T= Y 0 (1)
1<i<n

where ; is the wrench applied at the it" contact [2, 8].
This control law converges when the net wrench applied
by the contacts is zero. In the presence of friction, such
a grasp achieves wrench closure because it fulfills the con-
ditions for non-marginal equilibrium. Non-marginal equi-
librium requires the contact forces achieving net zero force
lie strictly inside their corresponding friction cones and
has been shown to be a sufficient condition for wrench clo-
sure [10]. This is equivalent to the grip Jacobian having a
nullspace.

In order to descend ¢,, the controller decomposes the
wrench error into force error and moment error compo-
nents €5 = FTf and €, = mTm. The two error gradients

Bes _ Oe¢s Of Fem _ Dem Orh
9% ~ af 0% o — om 0%
The controller descends the wrench error gradient by pro-
jecting the moment error gradient into the nullspace of the
force error gradient as follows:
a—i = aif +N (6—?) 66—1” (2)
or 0% ox ) 0%
This formulation reduces the number of spurious local min-
ima that can trap the controller. For more information on
this approach, see [8].

are calculated separately: and

Effective grasp control requires a constant stream of in-
formation regarding the surface normal perceived at each
contact. The contact control artificial potential, ®., en-
sures that this information is available by placing the ap-
propriate contacts on the object. Force control is used
to exert a small force along the inward surface normal of
each contact. If a contact momentarily drifts away from
the surface, this force controller restores contact. In the
implementation reported in this paper, force control is re-
stricted to the finger flexion degrees of freedom. The arm
degrees of freedom are controlled separately to condition
the finger so that when it does make object contact, the
contact point is well within the fingertip’s workspace.

The motion control artificial potential ®,,, descends ¢, =
(Zgoat — Teurrent)® Where Tgoq and Feyrrent are the goal
and current manipulator positions respectively. The kine-
matic artificial potential, ®, used in the current work de-
scends €k = (icenter - qu?‘rent)z- In this equation, CTcenter



is the vector of joint angles at the center of their range,
and @eyrrent is the current configuration of joint angles.

3.1 Binding the Grasp Controller to Whole Body
Contacts

®, can be instantiated with a non-unitary subset of the
input resources o (contacts used to compute the artificial
potential) and a subset of the output resources 7 (contacts
that move in response to the control output). For example,
suppose {1, 2,3} is the set of fingertip contact resources on
a three-fingered hand. Then, (®,] 113’3) displaces contacts
1 and 2 in order to form wrench closure among contacts 1,
2, and 3.

Grasp controllers can also be parameterized by virtual con-
tacts (virtual fingers). A virtual contact is a set of contacts
that provide a single oppositional wrench equal to the net
wrench applied by the constituent contacts [6, 9]. Exter-
nal forces on the object, such as gravity, are also consid-
ered virtual contacts. Gravity can be considered a contact
whose position is the center of mass of the object and whose
magnitude is equal and opposite to the net contact force.
We refer to a grasp utilizing different contact types a whole
body grasp.

For example, Dexter, the UMass Humanoid, consists of
two arms, two hands, and a stereo vision head as shown
in Figure 1. If the set of fingertip contacts on each hand
are combined to form a single virtual contact, the pair of
arms can be considered to be a pair of “fingers.” One pos-
sible set of contact resources on this platform is {l,r,g}
where {[} is the virtual contact on the left hand, {r} is the
virtual contact on the right hand, and {g} is the virtual
contact corresponding to gravity. For example, Figure 1
shows Dexter holding a ball in wrench closure between vir-
tual contacts on the left and right hands using controller
(<I>g|§:) Figure 2 shows Dexter holding a ball using both
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4 Using the Nullspace to Maintain Constraints

Many robotics tasks require a desired objective to be ac-
complished in the context of a set of constraints. In the
manipulation domain, such a problem involves realizing a
specified object reconfiguration over time while maintain-
ing wrench closure. In this section, we show how grasp
controllers may be concurrently combined to maintain a
wrench closure constraint. We also formulate an MDP
that enables the system to evaluate the relative value of
control decisions that traverse the set of wrench closure
states.

4.1 Maintaining Wrench Closure Constraints
When a secondary control action (®g) is executed in the
nullspace of an existing wrench closure condition, the sec-
ondary control action is guaranteed not to disturb existing
wrench closure. Implementing this relationship is trivial
if the output resources of &g are independent of the re-
sources used to maintain wrench closure. For example,
this is true when executing ®,|"" < &,|19. In this case,
it is safe to execute both controllers concurrently because
they operate on different sets of effectors.

However, when ®g requires resources that are also used to
maintain wrench closure, it is necessary to project the con-
trol action specified by &5 into the nullspace of the wrench
closure objective. This happens when the wrench closure
condition exists between the left and right hands. Assum-
ing that the primary wrench closure objective has already
been achieved by a prior run of a grasp controller, main-
taining wrench closure only requires force control. Each
contact must exert the appropriate grasping force normal
to the object surface. The secondary objective can be pro-
jected into the nullspace of this force control objective.

In the current work, we simplify the force control problem
by assuming that the force control objective requires the
contacts to make only small motions relative to each other.
If this is the case, force control can be accomplished ex-
clusively by the finger flexion degrees of freedom while the
hands maintain a constant relative pose. This assumption
makes it easier to project the secondary objective into the
nullspace of a control objective that maintains the constant
relative pose.

For example, suppose that the robot is already holding
the ball between left and right hands as shown in Figure 1

e. 3 l7 m
and we now execute |7 subJectito ®,|,7- Let &2 be
the gradient associated with &, lref , and let ‘?;q: be the

gradient that maintains a constant relative pose between
the two hands. These two objectives can be combined by

projecting 35;3 into the nullspace of %eqr as follows:
Oe _ Oer 9er ) Oem (3)
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This results in the left hand moving toward re f while the
right hand follows so as to maintain wrench closure. If it
is not possible for the left hand to reach ref, the system
will reach as far as it can and then stop. See Figure 1. A
similar approach can be used if &g is a grasp controller
that uses gravity as a resource such as ®,|7"7.

4.2 Maintaining Contact Constraints

The grasp controller requires that the object remains
within reach. However, the grasp controller displaces con-
tacts along the object surface without guaranteeing that
the object surface remains within reach. Therefore, a
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Figure 2: Dexter grasping a ball with both 4| and
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mechanism is needed to ensure that the hand does not
drift away from the object surface.

The grasp controller can be used together with the con-
tact controller to solve this problem. The contact con-
troller ensures that each contact remains on the surface
of the object. Since the grasp controller requires good
contacts, the contact controller funnels the state of the
system toward configurations where the grasp controller
can function. These controllers can be concurrently com-
bined by projecting the grasp control gradient (‘9‘;—;:’) into
the nullspace of the contact control gradient (‘?_f;) using
an equation similar to Equation 3. In the notation of the
control basis, this is represented by: ®, < ®.. The con-
troller that results from this control composition slides the
contacts along the surface of the object in the direction of
the negative wrench error gradient. As the contacts move,
the arm moves to keep the fingers in contact.

5 Maintaining Constraints in an MDP

In the course of manipulation tasks, it is often necessary
to maintain wrench closure on an object over the course of
many actions.

left, right
AN left, right

(I)right, grav
right

left, right, grav
left, right

Figure 3: Abstract representation of the equivalence class of
wrench closure states. Each of the four arcs represents a wrench
closure manifold in the robot’s multi-dimensional configuration
space. A manipulation policy moves the state of the system
along the arcs to the desired grasp.

Figure 3 shows a two-dimensional abstract representation
of configuration space. The four arcs represent lower di-
mensional manifolds in the configuration space due to four
grasp controllers. At any point in time, the state of the
robot is a point in the diagram. When a controller is ac-
tivated, the point-robot is drawn to the equilibrium mani-
fold corresponding to a particular wrench closure solution.
If a subordinate controller is executed in the nullspace of
the first controller, the state of the system moves along
the first controller’s equilibrium manifold toward configu-
rations that also satisfy the subordinate controller. Un-
der the right conditions, this can yield two simultaneous
wrench closure solutions.

We use an MDP like the one shown in Figure 4 to represent
the transition dynamics over grasp states and actions. In
the Figure, each state is drawn as a circle that corresponds
to the condition that a stable grasp exists among the pairs
of contacts listed in the circle. The arrows that fan out
from a particular state represent the set of available control
actions that move the system through the space of grasp
states. For every state, actions that do not maintain at
least one wrench closure condition asserted in that state
are pruned from the MDP. This simple rule guarantees
that the MDP only represents manipulation policies that
maintain wrench closure.

Notice that state in the MDP is not a geometrical asser-
tion, but a report about the membership of the grasp in
one or more of the manifolds illustrated in Figure 3. Con-
trol actions in the MDP transition the system from one
type of grasp to another by using subordinate controllers
to slide along wrench closure manifolds. This approach can
preserve the wrench closure guarantee while continuously
adjusting the grasp to accommodate a task.
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Figure 4: Illustration of the grasp MDP defined over a space
of wrench closure conditions. Each circle represents the state
when wrench closure exists among the resources listed in the cir-
cle. The arrows pointing between the circles represent possible
actions that move the system between one state and another.

6 Experiments

The control basis approach has been explored on a number
of platforms including a quadruped walking robot [4], mul-
tiple coordinated hand /arm systems [2], distributed mobile
robots, and Dexter, the UMass humanoid. The current
work is demonstrated on Dexter. This platform consists
of two Barrett WAMs (Barrett Technologies, Cambridge
MA) mounted on a humanoid frame. A BiSight (stereo
vision) “head” is mounted on top of the frame to provide
visual feedback. Each WAM is equipped with a 3-finger,
4 DOF Barrett Hand. Mounted on the tip of each Bar-
rett hand finger is an ATI 6-axis force-torque sensor that
makes possible the computation of a fingertip contact loca-
tion and normal. We demonstrate the expressiveness and
flexibility of the force-based control basis described in this
paper in two experiments where Dexter learned two dif-
ferent manipulation policies using the same set of control
primitives.

In the first experiment, a policy for translating a large
ball (18 centimeters in radius) approximately 80 centime-
ters from the medial plane was learned autonomously using
SARSA()) reinforcement learning (an online form of MDP
dynamic programming) [11]. The task starts with Dexter
holding the ball between two hands. The robot is required
to translate the ball. However, it is not possible to move
the ball directly to the goal position because the arms can-
not reach far enough to maintain the two-handed grasp
during the motion. Therefore, the robot must first execute
a regrasp and then move the ball. An MDP similar to the
one in Figure 4 models the transition dynamics of the con-
trollers. The robot receives reward only after achieving the
required ball displacement. The regrasp necessary to solve
the task was learned autonomously through trial-and-error
exploration. The structure of the MDP ensured that only

Step | Label | Composite Controller
1 Ch @, i,: < ‘I’clﬁ,:

2 C, By 77 a B[}

3 Cr B[} By 70

4 .7 < ®,|77

Table 1: A sequence of actions that translates the large ball.
The label C; references each action to an arrow in Figure 4. In
step 1, the robot grasps the ball with two hands. In steps 2
and 3, the necessary remanipulation is executed and the ball is
placed in the right hand. Finally in step 4, the robot executes
the desired reaching command.

control actions that maintained wrench closure were con-
sidered. This made learning safe and efficient. An optimal
trajectory through the learned policy is shown in Table 1.

In the second experiment, a simulation of Dexter learned
to rotate a large ball 180 degrees. The resulting policy
was executed on the robot. As before, SARSA()) rein-
forcement learning was used. However, in this experiment,
the learning system supplemented its on-line experience
with model-based knowledge also acquired on-line. This
task starts with the robot holding the ball between its
arms. The system is rewarded for achieving a ball orien-
tation 180 degrees away from the starting orientation. Be-
cause of workspace limitations, it is not possible for the re-
orientation to occur without a regrasp. The system learns
a valid regrasp sequence that achieves the re-orientation.
The MDP shown in Figure 4 constrains the system’s explo-
ration to only those control actions that maintain wrench
closure.

The learning process ran for a total of 40 episodes. On each
episode, the learning system executed actions until the goal
was reached or for a maximum of 15 steps. Figure 5 shows
a learning curve that plots the number of steps required
to reach the goal as a function of episode number. As the
number of episodes increases and learning continues, the
average policy learned moves closer and closer to optimal.

These two experiments demonstrate that the control basis
approach is able to represent these two different behaviors
using a single control substrate. The ability to represent a
variety of behavior in a single framework is a critical pre-
requisite for autonomously learning task-appropriate be-
havior. As the number of controller parameterizations and
legal controller compositions grows, we expect the variety
of represented behaviors to rise dramatically.
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Figure 5: Learning curve for learning the rotation gait. Data
is averaged over 18 separate learning experiments. The hor-
izontal axis is episode number in the learning process. The
vertical axis is the average number of control actions required
to complete the task in that episode. As learning progresses,
the number of actions required to rotate the ball drops quickly.

7 Conclusion

In this paper, we describe a control basis capable of gen-
erating a variety of force-based interaction. Among the
controllers in this basis, this paper focuses on the grasp
and contact artificial potentials. We show that these two
force-based artificial potentials can be parameterized with
arbitrary sets of whole body contact resources and com-
bined in a variety of interesting ways. The abundance of
control behavior expressed by different parameterizations
and combinations of these artificial potentials results in a
flexible system for generating task-level behavior.

We show that this control basis is well-suited to force-
based constraint maintenance problems. This approach
is demonstrated in the context of dexterous manipulation.
A markov decision process (MDP) is defined over the space
of wrench closure conditions. A simple rule prunes all ac-
tions that do not maintain wrench closure. The resulting
MDP can be used by reinforcement learning techniques to
autonomously learn manipulation policies that accomplish
specified goals. We present two demonstrations of this
technique where manipulation gaits were autonomously
learned.

We expect this approach to generating dexterous manipu-
lation in the context of a wrench closure constraint to gen-
eralize to arbitrary tasks where a set of constraints must be
maintained. Aspects of this approach have already been
demonstrated in a mobile robot exploration task where
robots are constrained to maintain line-of-sight [12].

In future work, we hope to use this force-based control
basis to describe block building tasks. We hypothesize that

the same wrench closure principles that underlie dexterous
manipulation are also adequate to describe the stability of
block structures.
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