
Cortical Involvement in the Recruitment of Wrist Muscles

Ashvin Shah,1 Andrew H. Fagg,2 and Andrew G. Barto2

1Neuroscience and Behavior Program and 2Department of Computer Science, University of Massachusetts, Amherst, Massachusetts 01003

Submitted 8 September 2003; accepted in final form 24 January 2004

Shah, Ashvin, Andrew H. Fagg, and Andrew G. Barto. Cortical involve-
ment in the recruitment of wrist muscles. J Neurophysiol 91: 2445–2456,
2004. First published January 28, 2004; 10.1152/jn.00879.2003. In exe-
cuting a voluntary movement, one is faced with the problem of trans-
lating a specification of the movement in task space (e.g., a visual
goal) into a muscle-recruitment pattern. Among many brain regions,
the primary motor cortex (MI) plays a prominent role in the specifi-
cation of movements. In what coordinate frame MI represents move-
ment has been a topic of considerable debate. In a two-dimensional
wrist step-tracking experiment, Kakei et al. described some MI cells
as encoding movement in a muscle-coordinate frame and other cells
as encoding movement in an extrinsic-coordinate frame. This result
was interpreted as evidence for a cascade of transformations within
MI from an extrinsic representation of movement to a muscle-like
representation. However, we present a model that demonstrates that,
given a realistic extrinsic-like representation of movement, a simple
linear network is capable of representing the transformation from an
extrinsic space to the muscle-recruitment patterns implementing the
movements on which Kakei et al. focused. This suggests that cells
exhibiting extrinsic-like qualities can be involved in the direct recruit-
ment of spinal motor neurons. These results call into question models
that presume a serial cascade of transformations terminating with MI
pyramidal tract neurons that vary their activation exclusively with
muscle activity. Further analysis of the model shows that the corre-
lation between the activity of an MI neuron and a muscle does not
predict the strength of the connection between the MI neuron and
muscle. This result cautions against the use of correlation methods as
a measure of cellular connectivity.

I N T R O D U C T I O N

The primary motor cortex (MI) plays an important role in the
control of voluntary movement. Early experiments investigat-
ing the control of reaching movements recorded single-neuron
activity in MI of the monkey as it performed a center-out
reaching task with its hand (Georgopoulos et al. 1982;
Schwartz et al. 1988). The activity of the MI neurons was
described as varying with the cosine between the direction of
hand movement in extrinsic space and the neuron’s preferred
direction (PD), also expressed in extrinsic space. A variety of
subsequent studies suggest that MI neural activity may capture
other aspects of movement. By varying the origin of hand
position in a three-dimensional center-out task, Caminiti et al.
(1990, 1991) described MI as encoding hand movement in a
polar-coordinate system centered at the shoulder. Kinematic
parameters such as velocity, acceleration, target direction, and
target position may also be represented by the activity of an MI
neuron—in some cases simultaneously (Ashe and Georgopou-
los 1994; Moran and Schwartz 1999; Schwartz and Moran
2000) or sequentially (Fu et al. 1995). Isometric studies suggest

that MI may also encode aspects of directional force (Georgo-
poulos et al. 1992; Sergio and Kalaska 1998).

While an extrinsic representation of movement in MI seems
to follow from the results of many of the studies outlined in the
preceding text, representations of movement in intrinsic space,
such as muscle activity or joint angle deviation, cannot be
excluded. If the primate varied its arm configuration while it
performed the same hand trajectory, corresponding MI activity
was described more accurately by models based on joint kine-
matics or joint torques than models based on hand-movement
direction (Scott and Kalaska 1995, 1997). Other models argued
that MI activity could be described by equations based on
muscle-shortening velocity (Mussa-Ivaldi 1988) or joint angle
deviations (Ajemian et al. 2000). Support for a muscle-based
representation of movement in MI arose from studies that
showed that MI neural activity (and PDs) changed with arm
configuration similar to how muscle electromyographic (EMG)
activity did in an isometric task (Sergio and Kalaska 1997) and
passive arm movement (Scott 1997). Other studies show that
the activity of red nucleus neurons, which may encode move-
ment similarly to MI (Houk et al. 1993; Miller and Sinkjaer
1998), correlated better with muscle activity than other vari-
ables (Gibson et al. 1985; Houk et al. 1987; Miller and Houk
1995; Miller and Sinkjaer 1998; Miller et al. 1993). Because
MI sends projections directly to the spinal cord, among other
areas, the idea that MI represents movement in an intrinsic
space is an attractive one.

While these studies suggest that MI best represents movement
in a particular coordinate frame, many of them indicate that other
coordinate frames may be represented as well (though to a lesser
degree). The results of more recent studies (Kakei et al. 1999,
2003) make the possible simultaneous representation of multiple-
coordinate frames in MI neural activity more apparent. These
studies investigated the variation of primate wrist muscle EMG
and MI neural activity during a 2 degrees of freedom wrist
movement task and provided evidence showing the existence of
two subpopulations of MI neurons: neurons with PDs that capture
extrinsic properties of movement and neurons with PDs that
encode muscle-activation patterns. The existence of both types of
neurons may support the idea that a serial processing scheme (see
Fig. 1, left) is implemented within MI [although Scott (2003)
offers a different interpretation—see DISCUSSION]. Under this
model, MI is actively involved in the transformation of an ab-
stract, extrinsic representation of movement into an intrinsic space
(Kakei et al. 1999, 2003).

A serial processing scheme is appealing because it offers a
simple mechanism for controlling all visually guided move-
ments. It also implies that the only projections MI sends to the
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spinal cord to control muscles arise from neurons that explic-
itly encode movement in a muscle-coordinate frame. However,
the complex architecture of the CNS allows for the possibility
of nonserial processing schemes (cf. Kalaska and Crammond
1992). Figure 1 illustrates a serial processing scheme (left)
versus a series-parallel processing scheme (right, hereafter
referred to as parallel) in which multiple populations of MI
neurons that are characterized as encoding movement in dif-
ferent spaces can each directly command muscles. Can an
extrinsic-like representation of movement participate in the
direct activation of muscles? Modeling work by Kakei et al.
(2003) and Salinas and Abbott (1995) suggests that this is
possible. Both show that a linear transformation exists between
an extrinsic representation of movement and an intrinsic one
under specific assumptions of how movement-related variables
are encoded. However, the intrinsic representations used devi-
ate from how muscles are recruited.

We examine the feasibility of the parallel processing scheme
through a neural network model inspired by the work of Kakei
et al. (1999). We show that it is computationally possible for a
population of neurons with PDs defined in extrinsic space to
directly control muscles appropriately. The model produces
muscle activation patterns similar to those recorded during the
task used in Kakei et al. (1999; Hoffman and Strick 1999). We
train the model with a performance-based optimization proce-
dure and do not impose an a priori representation of intrinsic
movement such as those used in Kakei et al. (2003) and Salinas
and Abbott (1995). We also use the model to examine the use
of correlation methods to make inferences of coding schemes
and connectivity. Elements of this work have been presented
previously in poster form (Shah et al. 2002).

MI and muscle involvement in the production
of wrist movements

Hoffman and colleagues (Hoffman and Strick 1999; Kakei et
al. 1999, 2003) described a 2 df step-tracking task in which a

human or monkey subject moved a manipulandum with its
wrist, fixed in a pronated, supinated, or midrange posture (Fig.
2), to move a cursor on a computer screen from a central point
to one of several targets falling on a circle around the starting
location. The kinematics of movement, EMG activity from
several muscles, and single-neuron activity in MI were re-
corded. Muscle activity as a function of target direction exhib-
ited a “truncated cosine-like” shape—for values of target di-
rection for which a cosine-like function is negative, the trun-
cated cosine is zero. A cosine of the form B cos(� � C) � D
was fit to the muscle activation patterns, with a low weight
given to values of muscle activity near zero to account for the
truncation. The parameter C defined the muscle’s PD for that
wrist posture.

The wrist step-tracking task distinguished three coordinate
frames: extrinsic, represented by the movement of the cursor
and unaffected by wrist posture; joint-centered, defined by
wrist flexion/extension and radial/ulnar deviation; and muscle,
defined by how the muscle PDs rotated as the wrist posture
rotated. As the wrist rotated 180° from pronation to supination,
muscle PDs rotated between 40 and 110° (Kakei et al. 1999).
MI neurons were labeled extrinsic-like, muscle-like, or joint-
like, depending on how their PDs rotated as wrist posture
rotated 180°. Because categorization of neurons was based
solely on how their PDs rotated, the suffix “-like” was explic-
itly included. Fifty percent of the MI neurons recorded were
labeled extrinsic-like because their PDs changed by only a
small amount. The depth of modulation of some neurons in this
category varied with wrist posture. Thirty-two percent of the
MI neurons were labeled muscle-like because their PDs shifted
similarly to muscle PD shifts. None of the neurons were
labeled “joint-like,” and the rest were not easily classified. The
presence of both extrinsic- and muscle-like neurons led Kakei
et al. (1999) to suggest that a serial processing scheme was
implemented in MI. This implies that only intrinsic neurons
(e.g., muscle-like MI neurons) can be pyramidal tract neurons
(PTNs). If PTNs consisted of only intrinsic neurons, one might
expect a spatial and temporal distinction between the intrinsic
and extrinsic neurons. However, Kakei et al. (1999) found no
such differences.

M E T H O D S

Overview and motivation

The results of Kakei et al. (1999) can be interpreted to support the
serial processing scheme. However, is it computationally feasible for
each population of MI neurons recruited for a task—including extrin-
sic-like neurons—to directly command muscles? One could approach
this question through the implementation of a model in which both
intrinsic- and extrinsic-like neurons command muscles. However, in
doing so, one would have to make assumptions about the origin of the
intrinsic responses. In addition, it would not be clear what the result-
ing contribution of the extrinsic population would be in the movement

FIG. 2. A schematic showing a monkey right hand gripping a handle in
pronated (left), midrange (middle), and supinated (right) wrist posture. Re-
printed with permission from Kakei et al. (1999). Copyright 1999 AAAS.

FIG. 1. Graphical representation of a serial processing scheme (left) and a
parallel processing scheme (right). The different shapes represent populations
of neurons whose activities are characterized as encoding movement in dif-
ferent spaces. Extrinsic, intermediate, and intrinsic shapes represent MI neural
populations; shapes labeled motor neurons represent spinal motor neurons.
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generation process. To avoid these difficulties, we instead choose to
ask a stronger question: can extrinsic-like neurons alone produce the
appropriate muscle responses? To answer this question, we have
created a neural network model in which a population of extrinsic-like
neurons directly activate muscles. The model is based on the task and
experimental findings of Kakei et al. (1999). The model presented in
this paper is an extension of the model presented in Fagg et al. (2002),
which directly finds muscle activation patterns that satisfy optimiza-
tion criteria; the resulting muscle activation patterns are similar to
those reported in Hoffman and Strick (1999) for the wrist movement
task.

Model architecture

The architecture of this network is shown in Fig. 3. In the following
paragraphs, vectors and matrices are in bold type while scalars and the
elements of the vectors and matrices are in italics. For example, the
array of MI neurons is denoted by m, a column vector of which
element mi refers to either m neuron i or the activation level of m
neuron i. (For simplicity, the term “neuron” will be used to refer to a
unit from the m array hereafter.) By design, the extrinsic-like neurons
behave like those recorded in Kakei et al. (1999): their PDs are
expressed in extrinsic space, but their activation levels are modulated
by wrist posture. Some neurons are more active when the wrist is
pronated than when it is supinated and vice versa. Each neuron sends
projections (K) directly to each of five muscles (a), which correspond
to the muscles from which Hoffman and Strick (1999) and Kakei et al.
(1999) recorded.

As described in detail in Fagg et al. (2002), each modeled muscle
contributes to the endpoint of wrist movement through its activation
level and pulling direction, which depends on wrist posture. Hoffman
and Strick (1999) determined the pulling direction of a muscle by
individually stimulating the muscle and observing immediate wrist
movement. Average pulling directions (in extrinsic space) for five
muscles and three postures are shown in Fig. 4 (D. S. Hoffman,
personal communication). The activation of the muscles determines
extrinsic movement of the wrist (x), analogous to cursor movement in
the task.

The neurons in this model are nonspiking; their activation levels are
expressed as a real value between 0 and 1, which can be thought of as
the firing-rate of the neuron. m has 2N neurons (we choose 2N � 96).
Within a given wrist posture, each neuron is most active when the

FIG. 3. Pulling directions of the 5 muscles primarily responsible for wrist actuation in the pronated (left), midrange (middle), and
supinated (right) wrist postures. Pulling direction was defined to be the immediate direction of wrist movement after stimulation of the
muscle (Hoffman and Strick 1999). Each vector represents the average pulling direction of the wrist muscle as derived from 2 monkey
subjects. The legend in each circle indicates extrinsic direction (degrees) and joint movement (Rad, radial; Uln, ulnar; Flx, flexion; Ext,
extension). Data from D. S. Hoffman (personal communication). 1-ECU, extensor carpi ulnaris; 2-ECRB, extensor carpi radialis brevis;
3-ECRL, extensor carpi radialis longus; 4-FCR, flexor carpi radialis; 5-FCU, flexor carpi ulnaris.

FIG. 4. Architecture of this model with 2N � 16 for clarity. The m array
represents MI neurons. The curve to the left of the m array approximates the
activation of the m neurons for a target direction near � � 180° when the wrist is
in the pronated (solid line), midrange (dashed line), and supinated (dotted line)
wrist postures. The a array represents the muscles. Each mi connects to each aj

through the connection matrix K. The x array represents the endpoint of wrist
movement. Each ai is connected to each xj through the connection matrix P�,
which depends on wrist posture � and represents muscle pulling directions for that
wrist posture. Full connections are not illustrated for clarity; connections that are
not illustrated are represented by vertical dotted lines, which indicate that the
connections follow the same pattern as the surrounding illustrated connections.
Closed unfilled arrows, excitatory connections; open arrows, mixed connections.
All units have linear activation functions except m, which has a lower threshold of 0.
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target direction is the same as its PD in extrinsic space. For i � 1,. . .,
N, the PD of m neuron i, PDi, is defined to be

PDi � � i

N
�360°

while

PDi�N � �i � N

N
�360°

(thus PDi � PDi�N for 1 � i � N). To create the extrinsic-like
behavior found in Kakei et al. (1999), we defined the activity of an m
neuron to take on a Gaussian-like shape around its PD and included a
wrist posture term (wi) to modulate its depth

mi � �exp�� �PDi � �

�
�2�� wi�����

where mi is the activity of m neuron i, � is the target direction, and �
is wrist posture. For i � 1,. . ., N, wi(�) � 0, 1/4, or 1/2 for � �
pronated, midrange, or supinated, respectively, while wi�N (�) � 1/2,
1/4, or 0. Thus m1 through mN are more active in the pronated wrist
posture while mN�1 through m2N are more active in the supinated
wrist posture. � defines the width of the Gaussian; this model uses
� � 74.5°, which produces a width at half-maximum of 120°. While
a narrow tuning function has some advantages in coding one-dimen-
sional features (Amirikian and Georgopoulos 2000; Zhang and
Sejnowski 1999), we use a relatively broad tuning function in the
interest of generalization. The function [�]� returns 0 if its argument
is �0—this sets the minimum possible activation level of any mi to 0.

The hard-wired pattern of activity of the neurons behave similarly
to the extrinsic-like neurons modulated by wrist posture recorded in
MI by Kakei et al. (1999). Figure 5 shows how the activity level of
one neuron varies with extrinsic target position. Although the activity
of this neuron is modulated by wrist posture, its PD does not change
with wrist posture. Figure 6 shows the activity of the array of neurons
in m when the target is at � � 180°; the activation pattern is different
for the three different wrist postures. Both extrinsic target direction

and wrist posture are represented in the activation of the neuron array.
While the modulation by wrist posture captures some intrinsic infor-
mation, a muscle coordinate frame is not represented in the activity of
the m array.

The 2N m neurons directly project to an array, a, of five muscles.
The connection matrix from m to a is referred to as K. There are no
imposed constraints on the elements of K; they can take on any
real value and each neuron has a direct connection to each muscle
(McKiernan et al. 1998). Negative connections can be accounted for
with inhibitory interneurons; however, because the abstraction level of
this model is high, we choose instead to allow K to contain both
positive and negative elements. Muscle activity is a linear function of
m

a � �
i�M

Ki mi

where a is the five-element column vector describing the activation
levels of the muscles, Ki denotes the weights of the projections from
neuron mi to each of the five muscles, and M is the set of all neurons
in m.

Each muscle is represented as a unit vector in the direction of its
pulling direction, indicated in Fig. 3 as the matrix P�, which changes
with wrist posture, but is not plastic. We assume that muscles con-
tribute to the endpoint of movement along their vector of action,
where the length of the vector is proportional to the muscle’s activa-
tion level, ai (analogous to the muscle EMG level). The muscles are
also assumed to contribute to the movement endpoint independently
of one another. Thus the endpoint of movement, x, is determined by
the weighted sum of the muscle pulling directions as follows

x � �
i�A

Pi
�ai

FIG. 5. Activity of m24 (PD24 � 180°) as a function of extrinsic target
position for wrist posture pronation (pro, —), midrange (mid, - - -), and
supination (sup, � � �). Note that m24�N has the same PD as m24, but its
activation is higher in supination and lower in pronation.

FIG. 6. Activity of the array of MI neurons (m, 2N � 96 neurons) for
pronation (pro, —), midrange (mid, - - -), and supination (sup, � � �) wrist
postures when the target direction is � � 180°. For m1 through m48, the activity
in pronated position is greater than the activity in midrange, which is greater
than the activity in supinated position. For m49 through m96, the activity in
supinated position is greater than the activity in midrange, which is greater than
the activity in pronated position. Both extrinsic target direction and intrinsic
wrist posture are represented by the activity of this array of neurons. Muscle
activity is not represented.
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where Pi
� denotes the pulling direction of muscle i when in posture �

and A is the set of all muscles. Note that only the endpoint of wrist
movement, not the path of movement, is simulated.

Selecting the MI 3 muscle connections

We wish to show that extrinsic-like neurons can directly generate
realistic muscle activation patterns. We do this in the context of the
model by showing that a K exists such that for each target position
and wrist posture, the wrist reaches the target and muscles only pull
(and never push). In Fagg et al. (2002), we discuss the redundancy in
muscle activation patterns and show that the introduction of a mini-
mum effort criterion applied to the muscles results in a cosine-like
recruitment of muscles similar to that observed experimentally (Hoff-
man and Strick 1999). Thus we include a third criterion: a minimal
degree of effort is used in making the movement.

We employ a gradient-descent method to identify an appropriate K
matrix. This is accomplished as follows: the initial elements of K are
randomly chosen from a uniform distribution between �1/2 and 1/2.
For a given target and wrist posture, a random K yields a random
muscle activation pattern produced by m and hence a random (and
inaccurate) endpoint of wrist movement. As in Fagg et al. (2002), we
define the error as follows

E�xtarg,a,�� �
1

2 �xtarg � �
i�A

Pi
�ai�

2

�
	

2
�a�2

where xtarg is the target location, � � � returns the magnitude of a
vector, and 	 is a regularization parameter set to 0.02. 	 represents a
trade-off between target error and muscle activation. Because all
movements are of unit magnitude, and x is a linear summation of
muscle activity, �a�2 is on the order of 1 for most movements. Thus
	 � 0.02 represents allowable errors on the order of 2% of movement
magnitude. The first term in E(xtarg,a,�) represents movement accu-
racy (1st criterion); the second term represents total muscle activation
(effort, 3rd criterion). The error gradient with respect to aj is


E


aj

� � �xtarg � �
i�A

Pi
�ai�T

Pj
� � 	aj

where T denotes the transpose of a vector. The error for muscle j is
defined as

ej � � �

E


aj

if aj � 0

� aj otherwise

To constrain muscle activation to nonnegative levels (2nd crite-
rion), ej is set to minimize E(xtarg,a,�) only if aj � 0; otherwise, ej is
set to bring aj toward 0.

The connection matrix K is modified as follows

Knew4Kold � �emT

where � is a learning rate set to 0.02 in this model and e is a column
vector representing the error terms for all five muscles. Note that this
is not intended as a biologically based learning approach. A K is
chosen such that all ajs are nonnegative (2nd criterion); within this
constraint, a K is selected such that it minimizes E(xtarg,a,�), which
includes the first and third criteria. The gradient descent method was
applied for each of the three wrist postures and 12 targets equally
spaced along a unit circle surrounding the central starting position,
yielding a total of 36 distinct tasks; the 36 tasks constitute one training
epoch. Note that each task, by construction, is represented by a unique
m activation pattern (Fig. 6). K was updated iteratively on each of the
36 tasks until the mean target error over all 36 tasks was �0.05.

Thirty independent training runs were executed, each with a unique
initial K. Over the 30 runs, the iterative procedure described above

converged to a solution within an average of 210,150 � 7,137 (SD)
training epochs. For each run, the SD in target error (over the 36 tasks)
was computed. The mean SD in target error over the 30 runs was
0.041 � 4.13 � 10�4. The mean maximum change in any single
muscle activation on the last epoch over all 36 tasks was 0.028 �
3.19 � 10�4, while the mean maximum change in any single element
of K was 0.0014 � 1.95 � 10�5. Thus termination of a run was
accompanied by convergence of the K matrix. For an individual task,
the muscle activation pattern (a, the 5-element vector describing the
activation levels of the 5 muscles) at convergence deviated from the
average over all 30 runs by 0.011 � 7.4 � 10�3, regardless of initial
conditions (the initial K matrix). The K matrix describing the weights
of the five projections from each m neuron, on the other hand,
deviated from the average over all 30 runs by 0.52 � 0.15. However,
there was a general pattern across the 30 runs (see Fig. 10, B and C).
Although there is no unique solution for K, the different Ks do yield
the same muscle activation patterns for each of the 36 tasks. The
existence of unique muscle activation patterns for each of the 36
distinct tasks is discussed in detail in Fagg et al. (2002). The length of
the muscle activation vector, averaged over all 36 tasks, was �a� �
1.20 � 0.38.

R E S U L T S

Muscle activation

The following analysis uses the results from 1 of the 30
runs. All other runs have very similar results. Figure 7
shows normalized model muscle activation versus target
direction as polar plots for muscles ECRL, ECRB, FCR, and
ECU in the midrange wrist posture. Hoffman and Strick
(1999) analyzed these four muscles from a monkey subject;
their data (Hoffman and Strick 1999; D. S. Hoffman, per-

FIG. 7. Normalized polar plots of muscle activation as a function of target
direction for muscles ECRL, ECRB, FCR, and ECU in the midrange wrist
posture. solid line, muscle activation as produced by the model; dashed line,
muscle activation as produced by a monkey subject (Hoffman and Strick 1999;
D. S. Hoffman, personal communication). Short open arrows, muscle pulling
directions; long closed arrows, model muscle PDs. The legend in the middle of
the figure denotes joint angle deviation and corresponding extrinsic direction
of movement in degrees for the midrange wrist posture: Rad, radial; Uln, ulnar;
Ext, extension; Flx, flexion.
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sonal communication) are included in Fig. 7 as dashed lines
for comparison. The function B cos(� � C) � D, where the
PD of a muscle is defined to be the parameter C, was fitted
to each muscle activation pattern. Because muscle activation
patterns followed a “truncated cosine” (due to the constraint
that all ai � 0), low muscle-activation levels (�0.05 in our
analyses) were given a zero weight in the fitting process.
The muscle-activation patterns as produced by this model
are similar to those reported in Fagg et al. (2002) that used
a gradient descent method to directly find muscle activation
patterns that satisfy the same three criteria as this model.
The model presented in this paper, in contrast, finds a
connection matrix K to transform the activity of the m array
into the appropriate muscle activation pattern.

Figure 7 also shows the pulling directions (short open
arrow) and calculated PDs (long closed arrow) of the model
muscles. In all four cases, the PD deviates from the pulling
direction. The discrepancy between pulling directions and
preferred directions is also seen in the EMG data from
Hoffman and Strick (1999). This difference is the result of
the uneven distribution of pulling directions of the muscles
(Fagg et al. 2002). If there is a large gap between the pulling
directions of two muscles, then the muscles have to devote
additional effort to pulling against each other to reach a
target located within the gap. Thus the PD of a muscle will
tend toward this gap. The similarity between the muscle
activation patterns as produced by this model and those
recorded experimentally demonstrate that it is possible for
an extrinsic-like representation to be translated (via a linear
transformation) into an intrinsic representation of movement
(muscle activation patterns).

Correlation analysis

Inspired by studies that used a correlation analysis to suggest
that neurons in the red nucleus and MI directly encode muscle
activity (Gibson et al. 1985; Houk et al. 1987, 1993; Miller and
Houk 1995; Miller and Sinkjaer 1998; Miller et al. 1993), we
have calculated the correlation coefficient for each neuron-
muscle pair over all 36 tasks in our model. The formula used
to calculate the correlation coefficient (corrij) between m neu-
ron i (mi) and muscle j (aj) is

corrij �

�

��

�mi�
)��mi��aj�
���aj�

��

�	

�mi�
���mi�
2��


�	

�aj�
���aj�
2

where 
 is the index of task in 	 (the set of 36 tasks), mi(
)
is the activation of mi for task 
, aj(
) is the activation of aj for
task 
, �mi is the average activation of mi over all 36 tasks, and
�aj is the average activation of aj.

The correlations between each neuron and each muscle
ranged between �0.68 and 0.88. While a high positive corre-
lation might be interpreted as the neuron coding in a muscle
coordinate frame, in this model it merely indicates that the
neuron and the muscle happen to have similar PDs—they are
highly active over the same range of tasks. Figure 8 plots, as a
function of target direction and for each of the three wrist
postures, the activities of the neuron and muscle that have the
highest corrij over all neuron-muscle pairs and the activities of
the neuron and muscle that have the lowest corrij. The highest
correlation (corrij � 0.88) was found between neuron number
49 (of 2N � 96) and muscle ECRL. m49 has a PD of 7.5°, while

FIG. 8. Activity of an m neuron (- - -) and activity of a muscle (—) as a function of target direction for each of the three wrist
postures. A: m49 and muscle ECRL, which have a high correlation (� 0.88). Note that these graphs are centered around a target
direction of 7.5°, the PD of m49, for clarity. B: m39 and muscle ECU, which have a highly negative correlation (� �0.68). Vertical
lines indicate the PDs of the m neurons (- - -) and muscles (—). PRO, pronated; MID, midrange; SUP, supinated. Note that the
activation function of the m neurons are only plotted for the 12 targets, hence the curves are not as smooth as those in Fig. 5.
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ECRL has a PD of 342.7° in the pronated wrist posture, 2.2° in
the midrange posture, and 17.6° in the supinated posture.
Because the neurons and muscles are active over a wide range
of target directions, the PDs of m49 and ECRL are considered
to be similar (Fig. 8A). The lowest correlation (corrij � �0.68)
was found between m39 and muscle ECU. Neuron m39 has a PD
of 292.5°, whereas ECU has a PD of 89.3° in the pronated wrist
posture, 119.7° in the midrange posture, and 155.4° in the
supinated posture. m39 and ECU were active over opposite
target directions (Fig. 8B).

Figure 9 summarizes this same relationship between all
neuron-muscle pairs. The corrij between each muscle and neu-
ron as a function of the PD of the neuron is plotted. Note that
by construction, neurons i and i � N (for 1 � i � N) have the
same PD. The scale bars in Fig. 9, top left, illustrate the
relationship between the PDs of the neurons and the index of
the neurons (also see METHODS section for the definition of PDi).
Also shown for each muscle are their PDs in each of the three
wrist postures. The corrijs between each muscle and the neu-
rons vary sinusoidally with the PDs of the neurons. For each
muscle, there is some neuron with which it has a high corrij
(ranging from 0.77 to 0.88, depending on the muscle). In each
case, the PD of that neuron falls within the range of the PDs of
the muscle as the wrist rotates from pronation to supination.

Figure 9 also shows that the corrij between a muscle and a
neuron is not determined purely by the neuron’s PD. As shown
in Fig. 6, neurons 1 through N are more active when the wrist
is in the pronated posture, while neurons N � 1 through 2N are
more active when the wrist is in the supinated posture. If the

muscle has the highest corrij with a neuron of index 1 � i � N,
then that muscle’s PD in pronation is closer to PDi than its PD
in supination (for example, muscle FCU in Fig. 9). Similarly,
if the muscle has the highest corrij with a neuron of index N �
1 � i � 2N, then that muscle’s PD in supination is closer to
PDi than its PD in pronation (for example, muscle ECRB in
Fig. 9). This is the case because the higher activation level of
the neuron in one wrist posture over the others contributes
more strongly to the correlation measure. Therefore the corrij
between a muscle and a neuron is determined by their PDs and
how active they are in each of the three wrist postures.

Connection strength and correlation

High correlations between the activity of a neuron and the
activity of a muscle may be used as evidence that there is a
positive connection between that neuron and muscle. However,
this is not the case in this model. Figure 10A plots the weight,
Kij, of the connection between mi and aj as a function of corrij.
The highest correlation associated with each neuron (across the
muscles) is highlighted as a square, whereas the lowest corre-
lation associated with each neuron is highlighted as a circle.
The corresponding connection weights for both highest and
lowest corrijs are normally distributed: the mean Kij (� SD) for
the highest corrijs is 0.096 � 1.36, whereas the mean Kij for the
lowest corrijs is �0.049 � 1.04. Thus corrij is not related to
Kij—for some neurons, the connection weight between it and
the muscle with which it has a high corrij is highly negative.
The variability in the distribution of lowest corrijs (circles) is

FIG. 9. Correlation coefficient (corrij) of each muscle with each m neuron vs. the PDs of the m neurons. Note that by
construction, m neurons i and i � N (for 1 � i � N) have the same PD. F, corrijs between the muscle and m neurons 1 through
N; E, corrijs between the muscle and m neurons N � 1 through 2N. N � 48. Vertical lines, the PDs of each muscle when the wrist
is pronated (PRO), midrange (MID), or supinated (SUP) postures. Top left: scale bars illustrating the relationship between m neuron
index and m neuron PD. The corrij depends on how similar the PD of the m neuron is to the PDs of the muscle.
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less than that of the highest corrijs (squares). This is due to the
requirement that the linear transform specified by K must
produce nonnegative muscle activation levels.

Figure 10, B and C, shows the weight vector (the weights of
the connections emanating from a single neuron to each of the
5 muscles) for neurons 49 and 39, respectively, for all 30 runs
(gray dots) and the mean of the 30 runs (black dots). Although
there is considerable variability among the 30 runs, the weight
vector exhibits a general pattern: although the set of all Kijs
ranges from �3.2 to 3.7 for the single run focused on in these
results, an individual Kij will only vary on the order of 1 across
the 30 runs. Figure 10B shows that the Kij between m49 and
ECRL (which have the highest corrij for the single run) is near
0, whereas the Kij between m39 and FCU (which have the
lowest corrij) is moderately negative. In addition, the Kij be-
tween m49 and FCU is fairly high, but their corrij is �0.44 for
the single run. The Kij between m39 and FCR is highly nega-
tive, but their corrij is 0.74. Thus even given the pattern across
the 30 runs, Kij and corrij may be conflicting.

Figure 10 shows that corrij does not predict the connection
strength between mi and aj (cf. Engel et al. 1991; König and
Engel 1995; Munk et al. 1995). By construction, one neuron
will exhibit correlated activity with other neurons. All that is
required to produce the observed neuron-muscle correlation is
that the net connection strength to the muscle be positive. This
effect is possible because there are many more neurons than
muscles or controlled degrees of freedom. Figures 9 and 10
also show that each neuron exhibits the full range of corrijs,
from highly positive to highly negative, with some muscle.

Sensitivity to noise

To determine the robustness of the model in the presence of
noise, signal-dependent noise (Harris and Wolpert 1998) was
added to neuron activity. For each neuron, noise was selected
from a normal distribution with a mean of zero and a SD of
mi�. Simulations were run 30 times each with � � 0.01 (low
noise) and � � 0.1 (high noise), which represent a range of
biologically plausible magnitudes of noise (Todorov 2002; van
Beers et al. 2003). For both cases, the model converged to a
unique K (in contrast to the highly variable Ks found by the
0-noise model). Like the Ks trained without noise, the elements

of the Ks trained with a low noise level had a wide range (�4.4
to 4.7). However, for high noise, the elements of K had a
narrow range (�0.19 to 0.34). In addition, for low noise, corrij

did not predict Kij, but for high noise, there was a weak
predictive relationship. The mean Kij for the highest corrijs was
0.06 � 0.09, whereas the mean Kij for the lowest corrijs was
�0.02 � 0.04. While this tendency was significant (t-test, P �
0.001), some Kijs between a neuron and muscle with a positive
corrij were negative (and vice versa). We examine the impli-
cations of these results in DISCUSSION.

In neither case did the model reach the termination condition
(average target error �0.05) within 1,000,000 training itera-
tions. However, the resulting K produced an endpoint of move-
ment near the target. Model strategy was tested by removing
noise and examining movement endpoint and muscle activa-
tion. The average target error (over the 36 tasks) was 0.07 �
0.06 for low noise and 0.12 � 0.08 for high noise. For both
levels of noise, a unique (across the 30 runs) muscle activation
vector was found for each of the 36 tasks. To determine if
neural noise resulted in a change in muscle recruitment, we
computed �ao(
) � a�(
)�, where ao(
) is the muscle-activa-
tion vector for task 
 derived from zero-noise training and
a�(
) is derived from noisy training. Averaged over the 36
tasks, the deviation in muscle recruitment was 0.15 � 0.10 for
low noise and 0.37 � 0.18 for high noise. The deviation in
movement endpoint, computed in the same manner, was
0.05 � 0.03 for low noise and 0.09 � 0.05 for high noise. Thus
even though the introduction of noise may result in different
muscle activation patterns and movement endpoints for some
tasks, the strategy was similar.

We examined the model’s ability to reach targets on which
it was not explicitly trained. A model with K trained on the
original 12 targets and no noise was presented with 144 ran-
dom targets (taken from a uniform distribution between 0 and
360°). While movement endpoints were in the vicinity of the
targets, accuracy was compromised—mean target error in-
creased to 0.22 � 0.14 over the 432 tasks (144 targets and 3
wrist postures). If the model was trained with random targets
for each training epoch (for 1,000,000 epochs) and thus sam-
pled a greater proportion of possible target directions, the mean
error over 144 random targets was 0.11 � 0.08. We also
examined the model’s sensitivity to the width of the target

FIG. 10. A: scatter plot of the connection weight between
mi and aj (Kij) as a function of corrij. circles, the lowest corrij

associated with each neuron across the muscle set; squares,
the highest corrij; dashed line, corrij � 0 and Kij � 0. B: the
strength of the connections emanating from m49 to each of
the 5 muscles for all 30 runs (gray dots) and the mean of the
30 runs (black dots). Dashed line, Kij � 0. C: same as B but
for m39. This figure shows that corrij does not predict Kij.
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encoding. When the width of the m neuron tuning function was
increased to � � 114.5°, a model trained on the original 12
targets and tested with 144 random targets had a mean target
error of 0.14 � 0.10. Thus when trained over a greater variety
of targets or with a wider neuron tuning function, the model’s
ability to generalize increased. Finally, we tested a model with
random PDs for the m neurons (as opposed to evenly distrib-
uted PDs) for 30 runs. The only notable difference between the
two models was that the model with randomly distributed PDs
took an average of 343,330 � 200,060 iterations to reach the
termination condition.

D I S C U S S I O N

A range of experimental and modeling studies have been
used to argue that the primary motor cortex encodes movement
in one or a small number of distinct coordinate frames (e.g.,
Ajemian et al. 2000; Caminiti et al. 1991; Georgopoulos et al.
1982, 1992; Kakei et al. 1999; Miller and Houk 1995; Mussa-
Ivaldi 1988; Scott and Kalaska 1997). These studies rely on
evidence of MI cell activity correlating with some aspect (or
aspects) of an executed movement. Emerging from some of
these studies, and from analogies with the robot control do-
main, is a serial processing scheme (cf. Dum and Strick 2002;
Loeb et al. 1999; Scott 2000) in which an extrinsic represen-
tation of movement (such as a visual cue) is transformed
through multiple stages and brain regions and culminates
within MI, where movement may be encoded as an explicit
representation of muscle-recruitment levels. However, the re-
sults of Kakei et al. (1999) argue against such a specialized role
for MI. In particular, a significant subset of the cells observed
in this study exhibited what Kakei et al. (1999) termed an
extrinsic-like behavior, in which cell PD did not change sub-
stantially despite changes in the muscle recruitment pattern. It
should be noted that a large subset of these cells did exhibit a
change in the depth of modulation as a function of wrist
configuration and hence encoded some intrinsic information. In
addition, a subset of cells exhibited muscle-like behavior in
which cell PD changed in a fashion similar to muscle PD. The
existence of both extrinsic- and intrinsic-like populations of
cells within MI led Kakei et al. (1999) to support the serial
processing scheme and to suggest that a portion of the trans-
formation might take place within MI itself.

The modeling results presented in this paper suggest that
populations of MI neurons that encode movement in different
coordinate spaces can each be directly involved in the recruit-
ment of spinal motorneurons (we refer to this approach as a
parallel processing scheme; Fig. 1). This perspective chal-
lenges the pure serial processing scheme in which intrinsically
behaving (specifically, muscle-like) MI cells are the only cor-
tical source of motorneuron input. In addition, experimental
evidence suggests that premotor areas, which encode move-
ment in a more abstract coordinate frame and likely take part
in an earlier stage of the sensorimotor transformation (Kakei et
al. 2001, 2003), have direct connections to spinal motorneu-
rons (Dum and Strick 2002; Luppino et al. 1994). Through the
use of a model of the Kakei et al. (1999) task, we ask about the
computational feasibility of the parallel processing scheme.
Rather than implementing a model in which both intrinsic- and
extrinsic-like cells activate muscles, we chose instead to in-
clude only the extrinsic-like cells. Such an approach asks a

more interesting question than the former (because intrinsic-
like cells should be capable of driving muscles without the
addition of extrinsic-like cells) and also asks a harder compu-
tational question. One benefit of making such a simplification
is that it avoids the need for making specific assumptions about
the origins of the muscle-like cell responses. Nevertheless, this
approach is not meant to argue against the existence or utility
of intrinsically behaving cells.

Our model shows that a linear transformation exists from a
population of extrinsic-like cells to a muscle activation pattern
capable of producing movements to a specified target for the
task described in this paper. In addition to generating appro-
priate movements, the model also produces muscle activation
patterns similar to the EMG patterns recorded by Hoffman and
Strick (1999). Taken together, these results demonstrate that it
is computationally feasible for extrinsic-like MI neurons to
directly command muscle activation patterns, which in turn
supports the plausibility of the parallel processing scheme.

Interpreting MI neural activity

Why do the results of different experimental studies lead to
different interpretations of what is being encoded by MI?
Todorov (2000) suggests that because muscle activation pat-
terns (and hence forces) are affected not only by the descend-
ing motor command but also by the muscle’s length, change in
length, and acceleration of length, the form of the experimental
question can lead to different interpretations about what is
being coded by cells of MI. Thus in some tasks, MI activity
appears to reflect extrinsic variables, whereas in other tasks, MI
activity appears to reflect intrinsic variables. In his paper, the
issue of multiple representations being simultaneously exhib-
ited by MI is not addressed (although the issue is also not
excluded). An explanation for simultaneous representations is
given by Scott (2003). In his review of the role of MI in
goal-directed movements, Scott suggests that the different pop-
ulations of MI neurons, each seemingly representing different
facets of movement, control different elements of the task. For
example, to move its arm in a certain way, a primate must also
control its posture, different types of spinal neurons, and a
multitude of other variables often ignored in data analysis and
modeling work. The different coordinate frames simulta-
neously represented in MI neural activity may be due to its
control of the myriad variables necessary to accomplish a task.
Although this may be the case, we show that it is computa-
tionally possible for units that behave in one coordinate frame
to directly control units that behave in a different coordinate
frame—neurons do not have to correlate their activity with that
of the units they command. Therefore neurons that behave
differently (e.g., extrinsic- and muscle-like neurons) can con-
trol the same variables (e.g., muscle activation) in parallel. In
addition, Loeb et al. (1999) discusses how having different
populations of neurons commanding the same variables may
increase performance and robustness.

Related modeling work

Several other modeling studies used error-driven backpropa-
gation to show that a sensorimotor transformation can be
computed by a simple network. Anastasio and Robinson (1989,
1990) developed three-layer neural network models of the
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vestibulo-oculomotor reflex in which the transformation from
the vestibular signals to the appropriate oculomotor responses
were performed by a hidden layer. The authors found that for
a network with an equal number of units in the input, hidden,
and output layers, the hidden layer units behaved as tensor
theory would predict: the units were maximally active for a
specific direction of eye or head rotation that coincided with
the direction of motor response of an output neuron. However,
when the number of hidden layer units was greater than the
number of output units, the PDs and activation magnitudes of
the hidden layer units were distributed and did not coincide
with the output units. The latter model produced hidden layer
units that behaved much more like the vestibular nucleus
neurons of the cat, which are thought to perform the sensori-
motor transformation (Anastasio and Robinson 1990).

In another study, Xing and Andersen (2000) developed
several three-layer network models of varying complexity; the
task for all models was to produce the correct motor output in
response to the sensory input. The simplest of these models
required no coordinate transformations, whereas the most com-
plicated of these models required both integration of multiple
coordinate frames and coordinate transformations. In models
where coordinate transformations were required, the coordi-
nate spaces of the hidden layer neurons were distributed and
did not correspond to any particular coordinate frame repre-
sented in the output array. In addition, the hidden units of the
more complicated models activated output neurons of different
coordinate frames simultaneously.

With a large number of neurons, neurons do not have to
behave in a stringent manner to perform a coordinate transfor-
mation. A simple linear mapping may be sufficient for the
necessary transformation (Sanger 1994). As shown by these
studies (Anastasio and Robinson 1989, 1990; Xing and
Andersen 2000) and our model, the characteristics of the
activities of neurons (e.g., how activity varies with aspects of
movement) does not necessarily lead to a causal relationship
with the units the neurons command.

Two other studies use models to show that a linear transfor-
mation can accomplish a transformation similar to the one
examined in our model. Kakei et al. (2003) present a simple
model that shares some fundamental architectural features with
our model. The model shows that the weighted sum of two
cosines, each of the form B cos(� � PD) and with different
PDs, produces a third cosine, the PD of which depends on the
relative weighting of the first two cosines. The first two cosines
represent two neurons that can be described as extrinsic-like
modulated by wrist posture, whereas the third cosine represents
a neuron that can be described as muscle-like. Kakei et al.
(2003) suggest that this linear summation can account for the
muscle-like neurons found in MI. In another modeling study,
Salinas and Abbott (1995) hard-wired an array of sensory
neurons [which behave similar to the extrinsic-like MI neurons
in Kakei et al. (1999)] and an array of motor neurons [which
behave similar to the muscle-like MI neurons in Kakei et al.
(1999)] and used a Hebbian learning rule to modify the con-
nections between the two. After training, the sensory array
could directly produce the appropriate activation patterns in the
motor array. We view the results of these studies as lending
support to the parallel processing scheme argued for in this
paper.

Although our model investigates a similar transformation as

those presented in Salinas and Abbott (1995) and Kakei et al.
(2003), our approach allows for the use of an optimization
procedure to select the motor output (muscle activation pat-
terns in our model) as opposed to committing to a predefined
representation. Salinas and Abbott (1995) and Kakei et al.
(2003) assume that the output array follows a Gaussian or
cosine form; our method allows for significant flexibility in
selecting an arbitrary output pattern. However, in all cases, the
simple, linear transformation is made possible by the sparse
representation exhibited by the input and output representa-
tions. The sparse representation in our model is the result of the
optimization procedure and was not explicitly included. In
addition, we show how the muscle activation output of our
model leads to endpoint of movement; this creates a plausible
motor plant that allows us to use a performance-dependent
optimization procedure.

The gradient-descent method used in our model has certain
advantages. While Kakei et al. (2003) show how the linear
summation of two extrinsic-like neurons can produce an arbi-
trary muscle-like neuron, our model specifically finds how to
weigh the contributions of the extrinsic-like neurons to produce
the appropriate muscle activation patterns. Salinas and Abbott
(1995) employ a Hebbian-style learning rule that, in the limit,
tends toward a linear transformation in which connection
strength is predictable from input/output correlation. Unlike
the learning rule employed in our model, this rule reduces the
number of effective degrees of freedom that are exploitable in
selecting a connection matrix. Although their learning rule
does represent one that is more biologically plausible (in cor-
tex) than the error-driven rule used in our model, it must
presume the existence of an external module that is able to
independently drive the sensory inputs and motor outputs cor-
rectly.

Effects of noise

The introduction of signal-dependent noise in our model
leads to a harder problem and thus a reduction in the degrees
of freedom afforded by neural redundancy. Although a trans-
formation exists from the extrinsic-like neurons to muscle
activation, there are more restrictions on this transformation.
For example, because the total amount of noise to a muscle is
minimized when averaged over many neurons, it is advanta-
geous to recruit many rather than fewer neurons to provide the
same input (cf. Todorov 2002). Thus in the model with high
neural noise, neurons with similar PDs will tend to activate a
muscle the same way (correlation and connection strength will
be related to some degree). However, in a high noise simula-
tion with more MI neurons (192), and thus greater degrees of
freedom, the predictive relationship between corrij and Kij was
weaker. In addition, to keep muscle activity from growing
unreasonably (because neurons are cooperating more), the el-
ements of K must be close to 0, also a property we observe in
the model with high neural noise. Although some of the noisy
model behavior can be explained by a reduction in the degrees
of freedom, some aspects can also be explained by similarities
with stochastic gradient search methods (Hassoun 1995;
Hoptroff and Hall 1989), which intentionally introduce noise in
gradient descent optimization. One of the advantages of this
method is that it aids in finding a global minimum (Schoen
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1991), seen in the unique Ks found in both of our models with
noisy neurons.

Future work

To focus on the issue of coordinate transformations, we
kept the level of abstraction of our model very high. In the
model presented in this paper and in Fagg et al. (2002), we
make the assumption that all muscles pull with equal
strength in their pulling directions. Fagg et al. (2002) dis-
cusses how muscle behavior changes when relative pulling
strengths are changed. In short, the qualitative nature of
muscle recruitment does not change. We also use an abstract
representation of muscle, in which we do not include time-
related aspects of muscle action, in our models. However,
the temporal behavior of muscle recruitment is also impor-
tant (Hoffman and Strick 1999). One area of future research
with this model is to incorporate the temporal aspects of
movement generation and the dependence on spinal and
muscular dynamics (Houk et al. 2002).

Our model includes a well-defined representation of move-
ment based on neurons recorded in Kakei et al. (1999). Why do
we see structure in neural activity at all? In continuing work,
we have adapted this model to include MI neurons that are not
hard-wired to behave a certain way. We are examining the
effects of local interactions (not included in the model pre-
sented in this paper) and optimization criteria (such as mini-
mization of metabolic energy, Balasubramanian et al. 2001;
Levy and Baxter 1996; Schreiber et al. 2002) in the formation
of neural behavior. Preliminary results show that the local
interactions and optimization criteria produce both extrinsic-
and muscle-like MI neurons that are active simultaneously
during the wrist task.
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