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Abstract— This work addresses the problem of coordinating a
team of mobile robots such that they form a connected ad-hoc
wireless network while addressing task objectives. Many tasks,
such as exploration or foraging, can be performed more efficiently
when robots are able to communicate with each other. All or
parts of these tasks can be performed in parallel, thus multiple
robots can complete the task more quickly than a single robot.
Communication and coordination among the robots can prevent
robots from duplicating the effort of other robots, allowing the
team to address the task more efficiently. In non-trivial environ-
ments, maintaining communication can be difficult due to the
unpredictable nature of wireless signal propagation. We propose
a multi-robot coordination method based on perceived wireless
signal strength between cooperating robots for exploration in
maze-like environments. This new method is tested and compared
to an existing method that relies on preserving a clear line of
sight between robots to maintain communication.

I. INTRODUCTION

Teams of cooperating robots have the potential to perform
many useful tasks for urban search and rescue, military recon-
naissance, and planetary exploration. An important component
of cooperation is communication between team members. For
tasks where different portions can be accomplished in parallel,
such as reconnaissance or exploration, a team of robots can
complete the task in a shorter amount of time than a single
robot. If a team of robots cooperates and shares information
among its members, then the task can be addressed even more
efficiently since situations where robots duplicate the effort of
other robots can be avoided. An example of this is sharing map
information so multiple robots do not explore the same area of
an environment [1]. But robots can only exchange information
when they can communicate with each other.

Maintaining wireless communication among a team of
robots moving through an unknown environment can be a
particularly vexing problem. The unpredictable and time-
varying nature of signal propagation can make it difficult to
determine if two robots will be able to communicate in the near
future. Previous work often relies on conservative coordination
methods that successfully keep robots in communication with
each other, but can over constrain the relative movement of the
robots [2, 3]. These methods rely on maintaining a clear line
of sight between communicating robots, which means that a
line drawn between the two robots cannot intersect any other
object. Since wireless communication often does not require
a line of sight, line of sight constraints can overly restrict
the robots’ movement. Line of sight methods also require that

the distance between communicating robots not exceed some
maximum distance. As in [3], we assume this distance is equal
to the maximum distance at which one robot can directly sense
another robot (with vision, laser, or other appropriate sensor).
This can also cause the robot team to be over constrained since
the range of wireless communication is often much greater
than the range of sensors such as cameras or range finders.

In this paper, we develop a coordination method to maintain
communication between robots using the perceived wireless
signal strength among robots. Our method allows a robot to
address task objectives as long as the wireless signal strength
among the robots remains above some threshold. When the
signal strength drops below the threshold, one or more robots
cease to address task objectives while they take action to
increase the signal strength. In simulation, we compare a
method that relies on maintaining a line of sight between
robots to our method. Compared to coordination methods that
require a line of sight between robots, our method allows for
greater flexibility since robots are not restricted to configura-
tions where there are no obstacles between them. This greater
flexibility leads to a large increase in task performance. In
some situations the average time to explore an environment
using signal strength coordination is less than 1

3
of the average

time achieved using the line of sight based method. Using
our proposed coordination method, robots are more prone to
temporary loss of communication with their teammates than if
they used a coordination method that enforces a line of sight
constraint. Depending on task requirements, these temporary
losses of connectivity may be acceptable given the increase in
task performance.

II. RELATED WORK

The use of robot teams to explore an initially unknown
environment has been the subject of much work [4, 2, 5, 6].
One of the challenges faced in this task is to maintain commu-
nication between members of a team. Exploration tasks can
be completed more efficiently when robots share information
with each other [1]. Communicating robots are also better
able to address tasks requiring explicit coordination such as
cooperative transport [7, 8], where two or more robots must
cooperate to move an object that cannot be moved by a single
robot. The problem of maintaining wireless communication
among a team of robots has been addressed by constraining
robots to be within “line of sight” of each other [2, 3, 9, 10].



This method of coordination is very successful at maintaining
communication between robots, but does not allow the robots
to take advantage of the fact that wireless signals (such
as those used by consumer wireless networking products)
typically do not require a direct line of sight between the
transmitter and receiver. Thus, the robotic team may be overly
constrained and not able to address its task as efficiently as
possible.

Clearly it is possible for all robots to share information even
if every robot cannot communicate directly (i.e. in one hop)
with every other robot in the team. In order to coordinate a
team in this manner, some method is required to determine
which pairs of robots must maintain direct communication
with each other. Leader-follower relationships between robots
[2, 11, 12, 13, 3] are commonly used to coordinate robot
teams. In exploration and formation keeping tasks, when two
robots are in a leader-follower relationship, typically the leader
is free to make progress towards task objectives, such as
exploration, while the follower is restricted to move within
some area relative to the leader (e.g. the area in which it can
communicate with the leader). Previous work on maintaining
communication in a team of mobile robots exploits leader-
follower relationships to determine which robots need to
maintain a clear line of sight to one another so they can
communicate [2]. We will use leader-follower relationships to
determine which pairs of robots must maintain wireless links
to each other.

Wagner and Arkin [14] propose an approach combining
planning and reactive behavior to maintain communication in
a team of robots performing a reconnaissance task. In this
approach, they use plans designed by hand to help maintain
communication in the team. Contingency plans are designed
that can be used in the event that wireless communication
is close to failing or fails due to insufficient signal strength.
Results are provided for teams of up to four robots utilizing
various configurations and control schemes. Hand designed
plans allow for sophisticated strategies, but require a priori
map knowledge, and thus are not suitable for exploration tasks
in unknown environments.

Powers and Balch [9] describe a method called Value-
Based Communication Preservation for moving a team of
robots to a goal location while maintaining communication
among the team members. Control decisions are based upon
the perceived and predicted signal strength of communication
with neighboring robots. It is assumed for the purpose of
control that wireless communication is line of sight only. The
results presented by Powers and Balch demonstrate that it
is feasible to use the signal strength of wireless signals to
maintain communication in a team of robots.

III. TASK AND ENVIRONMENT MODEL

A. Task

In this work, we address the task of cooperative mapping.
The objective of the cooperative mapping task is to explore an
initially unknown environment and to map all of the reachable
obstacles and free space in that environment. The map is
represented by a discrete grid in which each square is marked

Fig. 1. Example of a sparse environment

freespace, obstacle, or unexplored. A grid square is marked
as obstacle if there is an obstacle in any portion of the world
represented by that grid square. Each grid square is 4m × 4m.
Even though the map is discretized, robots move continuously
though the world. The task is complete when the environment
has been explored, i.e., when all grid squares in the map that
correspond to regions of the environment accessible from the
robots’ starting location are marked freespace or obstacle.

In this work, the performance of signal strength coordination
is compared to the performance of line of sight coordination in
the context of the cooperative mapping task. We observe both
the task performance and network connectivity of robot teams
of varying sizes addressing the cooperative mapping task in
a variety of environments. Since all of the experiments are
carried out in simulation, we need to define appropriate models
for the environment, robots, and communication between the
robots.

B. Environments

All experiments are performed in a 200m-by-200m square
environment. We use sparse and dense environments for exper-
iments. The sparse environment has 20 randomly placed line-
segment obstacles with a randomly chosen length uniformly
distributed between 1m and 10m. With equal probability,
obstacles are oriented parallel to one of the axes in the envi-
ronment. The dense environment is similar except it contains
120 line-segment obstacles. Examples of a sparse and a dense
environment are shown in Figures 1 and 2. All robots are
located in the lower left-hand corner of the environment at
the beginning of an experiment.

C. Inter-robot communication

For our experiments conducted in simulation to have sig-
nificance for real robots communicating wirelessly, we need
to take into account the wireless signal propagation charac-
teristics of real signals. It is very difficult to predict how a
signal will propagate in an environment, especially if there is
no line of sight path between the transmitter and the receiver.



Fig. 2. Example of a dense environment

Thus we must rely on extremely simplified models of signal
propagation.

The following assumptions are made about the wireless
channel between robots. If the signal between two robots is
sufficiently strong, then a link exists. If a link exists, then
the robots have enough bandwidth to exchange information
regarding their position, and any new map information every
simulation time step (once a second). We also assume that the
robots can accurately measure the signal strength of any signal
they receive and can determine which of their team members
they can currently communicate with. Competition for access
to the network’s physical medium is not modeled.

When referring to the strength of a signal, we do so in
terms of the path loss that occurs between the transmitter and
receiver. Path loss is the amount of power that a signal loses
between the transmitter and the receiver measured in decibels
(dB). The path loss between a pair of robots depends upon the
distance between the robots, the number of obstacles between
them, and the properties (such as material or density) of the
obstacles between them.

We assume a link exists between two robots when the path
loss between them is less than some value R. In order to
simulate path loss in an environment with obstacles, we use
the following model from Rappaport [15]:

PL(d) = PL(d0) + 20log

(

d

d0

)

+ αd +
∑

i

PAFi, (1)

where:

• PL(d0) is the path loss in dB at a small distance d0 from
the transmitter,

• 20log
(

d
d0

)

+ αd is the path loss due to the distance the
signal must travel in free space to reach the receiver,

• d is the distance between the transmitter and the receiver,
• α is a constant that depends on the type of environment

in which the signal is traveling (i.e., office building,
warehouse, or outdoors), and

• PAFi is the partition attenuation factor for the ith

obstacle between the transmitter and receiver.

The partition attenuation factor of an obstacle is the amount

of power a signal loses (dB) by passing through that obstacle
and depends on the material and density of the obstacle.

In the model of path loss given in Eq. 1, the path loss
smoothly decreases as the receiver moves away from the
transmitter, except at the boundaries of shadows cast by
obstacles. But even within these shadows, the predicted path
loss changes smoothly. In this respect this model does not
match the reality of signal propagation. In practice, when
there is no line of sight between a transmitter and a receiver,
path loss can change radically even for very small physical
displacements that do not introduce or remove occlusions
between the transmitter and receiver. Also, if no line of
sight exists between the transmitter and the receiver, the path
loss may vary significantly even for fixed positions of the
transmitter and receiver if the environment is not completely
static. These behaviors are due to the effects of multi-path
propagation, where multiple copies of the transmitted signal
reach the receiver at slightly different times and from different
directions [15]. Multi-path propagation occurs because objects
in the environment reflect and scatter the transmitted signal in
ways that can be difficult to predict. When a line of sight exists
between the transmitter and the receiver, the signal propagating
along the line of sight tends to dominate any multi-path
effects, and signal strength is much easier to predict. Multi-
path effects are modeled in our simulation by adding Gaussian
noise (with mean µ ≤ 0) to the model in Eq. 1 only when
the transmitter and receiver are not within line of sight of
each other. Since multi-path effects are often dominated by
propagation along the line of sight, no noise is added to
Eq. 1 when the transmitter and receiver are within line of
sight of each other. This model will not necessarily predict
signal strength fluctuations accurately, rather it is intended to
complicate the coordination of a communicating robot team
in the same manner that actual multi-path effects would.

D. Communication Parameters

In order to simulate wireless communication in an indoor
office environment, the communication parameters in Eq. 1
were set to: d0 = 1m, PL(d0) = 30dB, and α = 0.35.
These parameters were hand chosen by comparing the path
loss predicted by the model at various distances to the path
loss predicted at the same distances in the specification for
a common 802.11b card [16]. The model does not match
the specification in [16] exactly for any environment type,
rather it yields path losses that are between those given for
semi-open and closed environments. In most experiments we
assume that a signal passing through an obstacle loses 5dB of
signal strength. This could be expected from obstacles such as
cardboard boxes, storage racks, or other similar objects [15].
These parameters were not empirically verified and may not
yield the proper characteristics for any physically realizable
signal.

Figure 3 shows the path loss determined by the above model
for a transmitter at the center of the environment shown.
Lighter shades represent lower path loss and black grid squares
contain obstacles. No Gaussian noise was added in this case.
In Figure 4, Gaussian noise with µ = 0dB and σ = 5dB was



Fig. 3. The path loss (in dB) for a transmitter located at the center of the
environment as determined by Eq. 1. The environment shown is 88m × 96m.

Fig. 4. The path loss (in dB) for a transmitter located at the center of the
environment. Here, for grid squares not within line of sight of the center of
the environment, Gaussian noise with µ = 0 and σ = 5dB is added to the
path loss determined by Eq. 1. The environment shown is 88m × 96m.

added to the value given by Eq. 1 for grid squares not within
line of sight of the center of the environment.

Two robots can communicate in our simulation when the
path loss between them is less than R = 81.5dB. Even though
actual wireless communication hardware (such as commercial
802.11b equipment) can maintain a link when path loss
exceeds 81.5dB, we chose this value as a upper limit on
communication range to make communication maintenance
sufficiently difficult given the environments that can be reason-
ably simulated. If there are no obstacles obstructing the signal,
a path loss of 81.5dB corresponds to a distance of about 50m.

E. Ad-hoc network

It is assumed that the robots maintain an ad-hoc network
among themselves to the extent that the path loss between
them permits. The simulation does not consider the details
of such a network, but only determines which subsets of
the robot team can currently communicate. To make this
determination, a minimum spanning tree is built where the

nodes represent robots and the link cost are the path loss
between robots. Prim’s algorithm [17] is used to build the
minimum spanning tree. The number of partitions in the
network can be determined by counting the number of links in
the minimum spanning tree tree that have a path loss greater
than R = 81.5dB. It is important to note that the minimum
spanning tree does not necessarily represent the complete
topology of the ad-hoc network, rather it is used to determine
the network connectivity. The minimum spanning tree is also
used to determine the leader-follower relationships between
robots. The details of constructing the minimum spanning tree
will be given when the leader-follower relationships between
robots are discussed.

F. Robot Model

The robots are assumed to be holonomic point robots. We
assume a vision or range finder sensor that can “see” S = 8
meters. If any part of a map grid square is observed, it
is assumed that the entire contents of the grid square are
observed. Therefore, each robot can detect obstacles and other
robots within a range of 8m. This means that for two robots
to be in line of sight they must be no more than 8m apart. The
robots move at a constant speed of 0.25m per time step, where
a time step is equal to 1 second. The robots are localized and
always know their current position in the world.

IV. ALGORITHM

We propose a simple coordination method to preserve
communication in a team of robots addressing the coopera-
tive mapping task. This coordination method utilizes leader-
follower relationships between robots. The leader-follower
relationships are determined by a team topology that adapts
based upon the path loss between team members. A robot’s
active controller is determined by the perceived signal strength
between that robot and its leader. The purpose of this coor-
dination method is to maintain communication in a team of
cooperating robots, while, relative to line of sight coordination,
allowing the team more freedom to address task objectives
such as mapping the environment.

The team uses the ability to communicate with each other
to complete the mapping task more efficiently. When robots
can communicate with the team leader, they share map data
with the team leader. This allows all team members able to
communicate with the team leader to use the same map. When
map data is shared, a robot will not try to explore a region
that a teammate has already explored.

A. Team Topology

The task of coordinating the robotic team can be simplified
by using a team topology with the the following properties.
First, the team topology should allow the team to maintain
a connected network with each robot using only local infor-
mation to make control decisions. Specifically, it should be
the case that if every follower is in direct communication
with its leader, then the network of robots is connected.
It is also important that every robot have only one leader.



This simplifies control since multiple leaders could impose
conflicting constraints on a follower. Additionally, if a robot
has more than one leader, unless those leaders explicitly
coordinate their actions, it may not be possible for the follower
to maintain communication with all of its leaders, which could
cause the network to become partitioned. Another desired
property of the team’s topology is that there be a robot that
is the “team leader.” The team leader has no leader (thus it is
free to address task objectives) and every other robot should
ultimately be a follower of the team leader (i.e. every robot
is a follower of the leader, or a follower of a follower of the
team leader, etc...). The presence of a team leader helps ensure
that the team will always be making some amount of progress
toward task objectives.

In order to meet these criteria, the robot team uses an
adaptive topology based upon a minimum spanning tree that
is updated every k simulation time steps. At the beginning
of the task, one member of the team, robot r0, is chosen as
the team leader. r0 will be the team leader for the remainder
of the task. To form the topology for the team, a minimum
spanning tree is built where each robot is a node, r0 is the root
node, and the link costs between robots is the path loss of a
signal between them. Recall that path loss is the amount of
power a signal loses between the transmitter and receiver, and
is determined in our simulation environment by the methods
described in Section III-C.

We use Prim’s algorithm to build the minimum spanning
tree [17]. The tree starts as just the team leader, (r0). At each
step of the algorithm, we find the robot, i, not in the tree that
has the smallest minimum cost link to any robot already in the
tree. Let the robot already in the tree with the minimum cost
link to robot i be robot j. Robot i will be added to the tree by
adding the link between robot i and robot j to the tree. Robot
j will be robot i’s leader.

The above algorithm guarantees that every robot, except the
team leader r0, has exactly one leader, and the leader relations
propagate such that every robot in the team is ultimately
following the team leader. As discussed above, if all of the
links in the minimum spanning tree have a cost less than R =
81.5dB, the network of robots will be connected. Therefore, if
every follower can communicate directly with its leader, then
the minimum spanning tree is intact and the ad-hoc network
is connected. We have found empirically that updating the
topology every k = 5 simulation time steps works well since
it prevents thrashing when the path loss between various pairs
of robots is similar.

B. Harmonic Path Planners

A set of controllers used to realize our coordination method
is defined using harmonic path planners. Harmonic path plan-
ners generate trajectories using a harmonic function, which is
a solution to Laplace’s equation. Harmonic functions generate
an artificial potential in the robot’s configuration space and
have a number of properties that make them desirable as path
planners. Steepest gradient descent of the artificial potential
generated by a harmonic function results in the minimum
hitting probability path to a goal location. Harmonic functions
are resolution complete and free of local minima [18, 19].

In this work, a robot’s configuration consists of its coor-
dinates in a planar world. For the purposes of computing
harmonic functions, we will represent configuration space
as a discrete grid where every grid square is designated as
freespace, goal, or obstacle. Steepest descent of the harmonic
potential in this space is guaranteed to result in trajectories
that avoid all points designated as obstacle and eventually
reach one of the grid squares designated as goal. Successive
over relaxation is used to compute the potentials at each grid
square, and bilinear interpolation is then used to compute the
gradient at the robot’s location. For more details see Connolly
and Grupen [18].

Due to issues with numerical precision, in rare cases the
gradient of a harmonic function cannot be determined in some
portions of the configuration space. This can occur for regions
of space that are very far from goals. When a robot cannot
determine the local gradient of the harmonic function, it relies
on the NF1 navigation function [20] to determine the direction
of motion. The NF1 function computes a gradient based on the
Manhattan distance from a grid square in configuration space
to the nearest goal in configuration space. In very rare cases,
the harmonic function can cause dead-lock in a simulation due
to the necessity of moving in discrete steps.

C. Controllers

Controllers using harmonic path planners are used to gener-
ate the different robot behavior necessary for completing the
cooperative mapping task and for maintaining communication.
We use two controllers to generate motions for our robots: one
that moves a robot into a region where it is in line of sight of
another robot; and a second that causes a robot to move toward
unexplored areas of the environment. Both of these controllers
use a harmonic path planner as described above and differ only
in how they define goals in configuration space..

We describe controllers using the notation φ
g
i , where:

• φ is an artificial potential;
• g is sensory information used to determine the shape of

φ;
• i is a set of effectors used to descend φ.

g may refer to sensory information at any level of abstraction.
We use sensory abstractions at the level of configuration space
maps for specific objectives. We use harmonic functions to
generate the artificial potential φ, or in cases where the local
gradient of the harmonic function cannot be determined, φ

is determined using the NF1 function. Our effectors always
consist of single robots.

The controllers used are similar to those described by
Sweeney, et al. [2, 21]. Robot r uses the controller φEXPr

r

for exploration. The sensory abstraction EXPr marks all
unobserved grid squares as goal, all observed grid squares con-
taining obstacles as obstacle, and all other observed squares
as freespace. A grid square is considered observed if robot r

directly sensed the grid square itself or was informed about the
contents of that grid square by another robot. The boundaries
of the configuration space are always designated as obstacle.
φEXPr

r will generate trajectories that avoid obstacles and move
the robot toward unobserved areas of the world.



We use the controller, φLOSi

j , to bring robot j to a location
where it is in line of sight of robot i (i 6= j). The sensory ab-
straction LOSi marks all known obstacles (and the boundaries
of the configuration space) as obstacle. Grid squares that are
within some distance S of robot i, do not contain an obstacle,
and are within line of sight of robot i are marked as goal.
Thus, φLOSi

j moves robot j toward the region of space within
line of sight of robot i; if robot i is stationary, robot j is
guaranteed to reach this region of space.

D. Coordination Methods

To achieve the desired robot behavior using the above
controllers, we will combine multiple controllers using a
technique inspired by null space control. In systems with
excess degrees of freedom, subordinate tasks can be addressed
in the null space of superior tasks. Thus, one can guarantee that
subordinate tasks will not effect the performance of superior
tasks. The Moore-Penrose pseudoinverse is commonly used to
invert under-constrained linear systems and provides a natural
means of superimposing secondary tasks in the remaining null
space. [22]. In general, null space control allows multiple goals
to be addressed concurrently.

When tasks are defined using n dimensional artificial po-
tentials, a unique (one dimensional) gradient direction can
be computed locally. The n − 1 orthogonal subset of the
potential manifold describes the null space of the potential
field - a space in which subordinate actions do not alter the
potential underlying the superior controller. Using this notion
of a null space we can create compositions of controllers
where the actions of subordinate controllers do not effect
the progress of superior controllers [23, 24]. An operator
accomplishing the null space projection has been constructed
called the “subject-to” (/) operator[23] to compose controllers
that descend artificial potentials. For controllers, φα and φβ ,
φβ / φα (read “φβ subject-to φα”) means that the actions of
φβ are projected onto the equipotential manifold of controller
φα’s artificial potential. Thus, the actions generated by φβ do
not interact destructively with the progress of φα toward its
minimum.

In this work we will use the “subject-to” operator to
compose controllers in a way that approximates null space
control. In particular, we consider systems that must preserve
the equilibrium status of primary controllers while addressing
secondary gradients. We use φβ / φα to mean that when the
system is in a goal state of φα, φβ will be used to generate
motion commands. When the system is not in a goal state of
φα, then φα is used to generate motion commands exclusively.
This method of control composition requires that superior
goals have been met before subordinate goals are addressed
and allows the subordinate controller to disturb the superior
controller within bounds.

Leader-Follower Relationship for Line of Sight Coordina-
tion:
Under line of sight coordination, robot f uses φ

EXPf

f /φLOSl

f ,
where robot l is robot f ’s leader, for control. This means that
robot f will explore the environment as long as it is within
line of sight of robot l. When robot f is not within line of

S

R τ

Fig. 5. S is the distance (in meters) in which a robot can “see” obstacles
or other robots; R is the range (in dB path loss) of wireless communication
between robots; τ (in dB path loss) is the threshold at which a follower
robot activates φ

LOSl

f
when using signal strength control. Note that path loss

cannot be directly translated to meters without taking into account specific
environmental features, but τ is chosen such that in almost all situations τ
will correspond to a further distance in meters than S.

sight of robot l, robot f uses φLOSl

f to move toward the region
where it would be within line of sight of robot l. For the team
leader, φLOSl

f is undefined (because the team leader has no

leader), and φ
EXPf

f is always used for control.

Leader-Follower Relationship for Signal Strength Coordi-
nation:
For signal strength coordination, we will need to define one
more controller. Let φSIGl

f be a controller that is the same as
φLOSl

f , except the goal region generated by SIGl is all points
in configuration space where the path loss to robot l is less
than some threshold τ . τ is always less than R, the maximum
path loss at which communication is still possible. For signal
strength coordination, robot f uses φ

EXPf

f /φSIGl

f for control.
This means that robot f will explore the environment as long
as the path loss to robot f ’s leader, robot l, is less than τ .
Otherwise, robot f will move toward the region of space where
the path loss to robot l is less than τ .

As discussed above, it is very difficult to predict the path
loss for arbitrary locations of a transmitter and receiver.
Therefore it is not feasible to compute the configurations of
robot f where the path loss from robot l to robot f is less
than τ . But, it is still possible for robot f to directly sense (by
measuring the strength of the signal from robot l) whether
or not it is in a goal state of φSIGl

f . Because we cannot
compute the goal set of φSIGl

f , when robot f is not in a
goal set of φSIGl

f (i.e. when the path loss between robots
f and l is greater than τ ), φLOSl

f will be used for control.
φLOSl

f is not guaranteed to monotonically decrease the path
loss between robots l and f . But, as long as τ is greater than
the path loss for an unobstructed signal traveling distance S

(the maximum separation of two robots that are within line of
sight), the path loss between robots l and f will be less than
τ for all configurations in the goal set of φLOSl

f . Thus φLOSl

f

is a conservative approximation of φSIGl

f , and will in general
decrease the path loss between robots l and f .



It is possible for either of the coordination methods to
fail to keep every leader-follower pair in contact. When a
follower loses contact with its leader, the follower moves
toward the position the leader was at when communication
was last possible. The only other robot who’s behavior changes
is the team leader, which immediately stops whenever the
network of robots becomes partitioned. By having the team
leader remain in place, we can guarantee that communication
with the team will eventually be restored. If the robot that
lost communication with its leader reaches the last known
position of its leader without reestablishing contact with any
team member, it will then move to the position of the team
leader, which hasn’t moved since communication was lost.
Since we assume the environment is static, that all of the robots
are localized, and that movement is error free, the disconnected
robot will eventually establish communication with the team
leader if it does not encounter any other member of the team
first.

V. RESULTS

In this section, we present results demonstrating the per-
formance of the signal strength coordination method in a
variety of conditions and compare the perfomance of the signal
strength coordination method to the performance of the line of
sight coordination method. The experiments are designed to
test the scalability of the coordination methods, the robustness
of the coordination methods to various environmental factors,
and the sensitivity of signal strength coordination to algo-
rithmic parameters. The adaptive topology is also compared
to a number of fixed topologies to empirically verify its
performance. Experiments were performed with teams of 2,
4, 8, 16, and sometimes 32 robots in both the sparse and
dense environments defined above. We used the same 25
randomly generated instances of each environment for every
experiment. In the following graphs, each bar represents the
average of 25 trials, one in each instance of the appropriate
environment type. In this work, when the network of robots
was partitioned, robots not connected to the team leader were
allowed to change their leaders (the topology was still adap-
tive). We discovered that in rare cases this lead to a live lock
situation where the partitions would never merge and all task
progress would stop (since the team leader is prevented from
moving when the network is partitioned). In cases where this
occurred, the experiment timed-out at 20, 000 time steps. This
problem will be remedied in future experiments by keeping
the topology static in network partitions that do not contain
the team leader. A trial that deadlocked due to the problem
with discrete motions along a harmonic gradient timed-out at
20, 000 time steps as well.

A. Number of Robots

We first conducted experiments to determine how team size
effects the performance in teams using either the line of sight
or signal strength coordination methods. This is a crucial
metric for algorithms designed for robot teams, since a good
coordination method for a team of robots should make efficient
use of all members of the team.
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The average time to fully search the maze using both the line
of sight and signal strength coordination methods is shown in
Figures 6 and 7. For signal strength coordination we set τ =
73.7dB. The bars labeled “LOS” correspond to line of sight
coordination, and the bars labeled “SIG” correspond to signal
strength coordination. The bars labeled “R=inf” correspond
to the case where signal strength coordination is used and
communication range is unlimited (τ is also set to infinity in
this case). This case is included to provide a lower bound on
the search time.

The shading of each bar represents the number of partitions
in the network. For example, for sixteen robots using signal
strength coordination in the dense environment, the network
has one partition (i.e., it is fully connected) for about 1400 time
steps; for about 450 time steps there were two partitions; for
roughly 85 time steps there were three partitions; and for less
than 1% of the total number of time steps there were four, five,
or six partitions in the network. The total number of time steps
in which the group contained more than three partitions is so
low that the corresponding regions in the graph are not visible.
The maximum number of partitions that occurred during any
of the 25 trials is indicated by the number at the upper right
of the bar.

The results show that the signal strength coordination
method outperforms the line of sight coordination method in
every case (p < 1.5× 10−12)1, but line of sight coordination
is slightly more successful at keeping the network connected.
This is to be expected since the signal strength coordination
method allows the robots to spread out more than the line of
sight coordination method does, increasing the amount of the
environment that can be covered in parallel, but also increasing
the chance that the network connecting the robots will become
partitioned. The search times are lower in general for the dense
environment since it has a smaller area to be searched than
the sparse environment.

Our results indicate that signal strength coordination ben-
efits much more from additional robots than line of sight
coordination does. When line of sight coordination is used,
teams of 32 robots complete the search task approximately
2.0-2.4 times quicker than teams of two robots. When signal
strength coordination is used, teams of 32 robots complete the
search task approximately 5.2-6.7 times quicker than teams
of two robots. The signal strength coordination method makes
better use of additional robots since it allows robots to disperse
further, increasing the likelihood that a robot is observing a
part of the environment that has not been observed by another
robot. Also, these results demonstrate that it is more difficult to
maintain a connected network in the dense environment due to
the additional obstacles. The additional obstacles will tend to
increase the chance that a motion could cause a large change
in path loss (by introducing one or more obstacles between
the transmitter and receiver) which makes it more difficult for
the network to remain connected.

1The paired t-test assumes that the differences between pairs of elements
from two different samples are normally distributed. Here, the pairs consist
of trials performed in the same environment, but with different coordination
methods/parameters. The paired t-test determines the probability p that the
mean difference between pairs is not 0.

The cases where the communication range is assumed to be
infinite (R=inf) provide an upper bound on the performance of
any coordination method given the particular search strategy
employed. Figures 6 and 7 show that as the number of robots
increases (and particularly for the cases where n = 16 or 32)
the performance of signal strength coordination approaches
the performance achieved when the communication range is
assumed to be infinite. The difference in performance between
signal strength coordination and the “R=inf” case is always
statistically significant in Figures 6 and 7 (p ≤ 0.0042 for any
number of robots in either environment ). But the performance
of signal strength based coordination is close to optimal in
these cases given the chosen search strategy since no method
for maintaining communication (that doesn’t involve changing
the search strategy) should be able to improve over the case
where the communication range is infinite.

B. Signal strength threshold

The signal strength coordination method requires choosing
a value for the threshold τ that determines when robots will
switch from the φEXPr

r controller to the φLOSi

j controller. In
order to evaluate the signal strength coordination method we
need to find both the optimum value for τ and how sensitive
task performance and network connectivity are to different
choices of τ . Finding the optimum value for τ in a given
situation demonstrates the performance of the signal strength
coordination method. If the method is to be used in practice,
we need to know how sensitive performance is to variations
in τ . If the sensitivity is too high then it may be difficult for a
system designer to pick an appropriate value for τ , especially
if the environment is unknown, which would reduce the utility
of the method.

Experiments were performed in both the sparse and dense
environments, varying the value of τ . Since communication is
broken when the path loss exceeds 81.5dB, we only consider
values of τ less than or equal to 81.5dB. We found that
values of τ around 81.5dB tend to cause teams to become
highly partitioned and resulted in search times so high that
simulations would not finish in a reasonable amount of time.
For this reason we choose 80.5dB as the highest value of τ

to test. 59.7dB was chosen as the lowest value of τ to test.

Figures 8 and 9 show the search times in the sparse and
dense environment respectively. Each line in these graphs
corresponds to a particular team size, and shows the change
in search performance as τ is increased. The leftmost point of
each line shows the performance of the line of sight method.
The graphs indicate that performance is similar for a large
range of possible values for τ . The graphs also indicate that
values of τ that are too too low can adversely affect the task
performance. Figures 8 and 9 seem to suggest that values of τ

that are too high can also adversely effect task performance,
though in each case there is no statistical significance between
the low point of a curve and the right most end of the curve
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is used in the
signal strength control method. Each line shows the search time for a specific
number of robots (2, 4, 8, or 16) as τ increases. The leftmost point of each
line shows the performance of the line of sight method for the corresponding
number of robots. For four robots and τ = 80.5dB, one trial timed-out due
to the previously discussed problem with the dynamic topology.
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Fig. 9. Mean number of time steps to map dense environment versus τ .
τ is the threshold that determines when the controller φ
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is used in the

signal strength control method. Each line shows the search time for a specific
number of robots (2, 4, 8, or 16) as τ increases. The leftmost point of each
line shows the performance of the line of sight method for the corresponding
number of robots.

(τ = 80.5).2

In the environments tested, τ can be set around 77dB
with essentially no adverse effect on task performance. This
removes the need to carefully tune the algorithm for different
scenarios. It is possible that for certain environments, perfor-

2To avoid problems arising from multiple comparisons [25], the statistical
significance of the difference between the low point on the curve and the
right most point on the curve is confirmed in an additional 25 trials that
are independent of the 25 trials used to make the graphs shown. This is
accomplished by performing the experiments in 25 independently generated
environments. For example, comparing the τ = 77.6dB and τ = 80.5dB
cases in dense environment yields p < 0.0009 in the initial data set, but
comparing the same two cases in the independently generated data set yields
p < 0.1077. Accordingly, we cannot claim the difference is significant.

mance is more sensitive to the value of τ ; this will be the
subject of future work.

These experiments also demonstrate how the value of τ

effects connectivity in the network of robots. Figures 10 and
11 display the time to map the environment for each team
size and value of τ , broken down by the number of partitions
in the network. We can see from Figure 10 that τ does not
have a large effect on network connectivity in the sparse
environment. The network is partitioned only slightly more
often as τ increases, which is expected since a higher value
of τ allows the robots to disperse more. On the other hand,
Figure 11 shows that in the dense environment the network
connectivity is effected significantly by the value of τ . This
suggests that in the dense environments, network connectivity
may be more sensitive to the value of τ than task performance.
Thus, in some cases, τ may need to be chosen more carefully
if network connectivity is a high priority.

C. Obstacle Composition

The partition absorption factor, or PAF, of an obstacle
determines the amount of path loss that occurs due to that
obstacle being between the transmitter and receiver. So far,
we have only considered obstacles with a PAF of 5dB. In real
environments, robot teams are likely to encounter obstacles
with a large range of PAFs, since the PAF of an obstacle is
dependent upon the obstacle’s composition and thickness. The
sum of the PAFs for all obstacles between the transmitter and
receiver appears as the term

∑

PAF in the path loss model
given in Eq. 1.

For this set of experiments, the mapping task was performed
in the dense environment with a team of 8 robots with the PAF
of every obstacle set to 5, 10, 15, 20, or 25dB. This range
of PAFs covers many different materials. As stated before, a
PAF of 5dB might be expected from obstacles such as empty
cardboard boxes or storage racks, whereas PAFs from 20-
25dB might be expected from concrete block walls or metal
obstacles [15]. The results of these experiments are shown in
Figure 12.

The performance of the line of sight coordination method is
nearly constant for all of the values of the PAF. When the robot
team uses line of sight coordination, there is almost never more
than one obstacle between a transmitter and a receiver, and as
soon as an obstacle is introduced between a transmitter and
receiver (a leader-follower pair), the follower takes action to
reestablish line of sight. Therefore, the PAF of the obstacles is
not expected to have a large effect on the line of sight method.

In general, the performance of the signal strength based
coordination method degrades as the PAF increases. There
is a small increase in performance when the PAF goes from
20dB to 25dB, but this difference is not statistically significant.
The task performance of the signal strength method degrades
because the higher PAF limits how far the group can disperse
in the presence of obstacles. Also, a higher PAF implies that
motions introducing an obstacle between a transmitter and
receiver are more likely to increase the path loss for that
link beyond the point where communication is possible. This
presents more of a problem for signal strength coordination
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Fig. 10. Mean number of time steps to map sparse environment versus
τ . τ is the threshold that determines when the φ
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is used in the signal

strength control method. The bars are grouped by number of robots, and each
bar is labeled with its corresponding threshold value τ , or “LOS” for line of
sight control. For four robots and τ = 80.5dB, one trial timed-out due to
the previously discussed problem with the dynamic topology. The error bars
represent one standard deviation, and the numbers to the upper left of each
bar indicate the maximum number of network partitions present at one time
in any of the 25 trials represented by the bar. The data used to produce this
graph is the same as that used to produce Figure 8.
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than for line of sight coordination. Under line of sight coordi-
nation, the robots are relatively close together and are likely
experiencing little path loss (for an unobstructed pair of robots
with a separation of S = 8m, the path loss between the robots
is around 51dB). Introducing one obstacle with a PAF of 25dB
between a pair of robots in this case is not very likely to cause
the threshold to exceed R = 81.5dB. In the case of signal
strength coordination, since the robots are often further apart
spatially then allowed under line of sight coordination, the
path loss between pairs of robots may be much closer to R

before an obstacle is introduced between the robots. In this
case, the introduction of an obstacle with a PAF of 25dB may
be very likely to cause the path loss between the pair of robots
to exceed R, especially if R− τ < 25dB.

For the cases where PAF is 20dB or 25dB, the performance
of signal strength coordination is quite close to that of line
of sight coordination. In the both the 20dB and 25dB case,
there is no statistically significant difference between the
performance of line of sight coordination and signal strength
coordination (p < 0.2934 for 20dB, and p < 0.126 for 25dB).
There is a statistically significant difference in the 5,10, and
15dB cases (p < 2.7 × 10−6). Part of the reason for the
relatively poor performance of signal strength coordination in
these cases is that one or more trials timed out at 20,000 time
steps due to the previously mentioned issue with the adaptive
topology in both the 20dB and 25dB cases. Additionally, when
the PAF is higher, it may be the case that the performance
of the signal strength based method is more sensitive to the
value of τ . For these experiments, τ was set to 73.7dB which
may not be the optimal value. Exploring this issue will be the
subject of future work.
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Fig. 13. Performance of topologies using signal strength coordination
in the sparse envrionment: A comparison the “minimum spanning tree”
(mst), “star”, “chain”, and “fixed tree” (ft) topologies using the signal strength
method in the sparse environment with τ = 73.7dB. The error bars represent
one standard deviation, and the numbers to the upper left of each bar indicate
the maximum number of network partitions present at one time in any of the
25 trials represented by the bar.

D. Significance of fluid topologies

To determine the effectiveness of the flexible signal strength
based team topology, we perform experiments where the
leader-follower relationship between robots is held fixed and
compare the results to those of obtained with the flexible
topology. Fixed leader-follower relationships means that robots
do not change their leaders and will always try to maintain
a path loss less than τ or a line of sight to their leader,
depending on the coordination method employed. We assume
that the network topology is still ad-hoc and is determined in
the same way as in all previous experiments. This means that
for a fixed topology it is still possible for the network to be
fully connected even when one or more leader-follower pairs
is not in direct communication. Thus, having every leader-
follower pair able to communicate directly is sufficient, but
not necessary, for the network to be connected. We chose to
allow network routing to remain flexible in order to find the
maximum possible performance of the fixed topologies.

We tested three different fixed topologies. In a star topology
all robots (except the team leader) are followers of the team
leader. In a chain topology, the robots are arranged in a leader-
follower chain where every robot except the one at the end of
the chain has exactly one follower. In a fixed tree topology,
the robots form a tree with a branching factor of two, with the
team leader as the root of the tree. Each robot is a follower
of its parent in the tree. We tested these fixed topologies in
the sparse and dense environments, using both signal strength
coordination (with τ = 73.7dB) and line of sight coordination.
The results are shown in Figures 13-16.

For a team size of two, all of the topologies perform
equivalently which is expected since all of the topologies
are equivalent for just two robots. As the number of robots
increases, the adaptive minimum spanning tree and chain
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Fig. 14. Performance of topologies using line of sight coordination in
the sparse envrionment: A comparison the “minimum spanning tree” (mst),
“star”, “chain”, and “fixed tree” (ft) topologies using the line of sight method
in the sparse environment. For four robots in the “star” topology, one trial
timed out due to issues regarding the use of harmonic functions in simulation.
The error bars represent one standard deviation, and the numbers to the upper
left of each bar indicate the maximum number of network partitions present
at one time in any of the 25 trials represented by the bar.

topologies outperform the star and fixed tree topologies. Since
the star topology does not allow robots to disperse very
far from the team leader, additional robots do not result in
a large increase in task performance. This effect is more
pronounced when signal strength coordination is used. For the
same reason though, the star topology maintains better network
connectivity than the other three topologies. One reason that
the fixed tree topology performs worse than the chain or
minimum spanning tree topologies could be that the maximum
separation between any two robots (not necessarily in a direct
leader-follower relationship) is much less in the fixed tree
topology than in either the chain or minimum spanning tree
topology. The disparity in maximum separation grows as the
team size increases. This restricts the amount of area that
the team in a fixed tree topology can cover simultaneously.
Also, each “parent” robot in the fixed tree topology places the
same constraints on its two “child” robots. This can cause the
two “child” robots to remain close together and to search the
same area of the environment as each other. This is clearly
not an efficient use of resources and contributes to the poor
performance of the fixed tree topology.

In all of the situations examined, the minimum spanning tree
topology performs as well as, or better than, the chain topol-
ogy. There is a statistically significant difference (p < 0.0053)
between the performance of the adaptive minimum spanning
tree and the fixed chain topology for teams of 16 robot in
all four scenarios. There is also a significant difference (p <

0.0280) between the performance of the minimum spanning
tree topology and the chain topology for teams of 8 robots, in
either environment, when signal strength coordination is used.
Observations of teams using the adaptive minimum spanning
tree topology show that the resulting topology is often a chain,
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Fig. 15. Performance of topologies using signal strength coordination
in the dense envrionment: A comparison the “minimum spanning tree”
(mst), “star”, “chain”, and “fixed tree” (ft) topologies using the signal strength
method in the dense environment with τ = 73.7dB. The error bars represent
one standard deviation, and the numbers to the upper left of each bar indicate
the maximum number of network partitions present at one time in any of the
25 trials represented by the bar.

or a formation that is close to a chain, especially when line
of sight coordination is used. This explains why the two
topologies are so close in terms of performance. Observations
also indicate that in some situations, the chain topology can
force follower robots to take the same path around obstacles
as their leaders. This diminishes the effectiveness with which
the follower robots address the mapping task. This behavior is
not as prominent when the minimum spanning tree topology
is used. This may partially account for the difference in the
performance of the two topologies.

VI. DISCUSSION

In this paper we have demonstrated, in simulation, the
effectiveness of our signal strength coordination method. Com-
pared to line of sight coordination, signal strength coordination
completes mapping tasks much quicker, with usually minimal
disruptions in network connectivity among the robots for
teams ranging in size from 2 to 32 robots. Our experiments
suggest that signal strength coordination does not require
extensive tuning in order to perform well in a variety of
situations, which is important if teams using this method are
to be deployed in unknown environments. A network topology
that adapts based on the signal strength between pairs of
robots was introduced. We have shown that such an adaptive
topology aids the performance of a team using signal strength
coordination when compared to a variety of static formations.
This topology, combined with signal strength coordination
provides a way of allowing members of a team to be in near
constant communication while still maintaining a high level
of task performance.

There is still much work to be done regarding the coordina-
tion of a team of robots based on the signal strength of wireless
communication. First, the results obtained in simulation need
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Fig. 16. Performance of topologies using line of sight coordination in
the dense envrionment: A comparison the “minimum spanning tree” (mst),
“star”, “chain”, and “fixed tree” (ft) topologies using the line of sight method
in the dense environment. The error bars represent one standard deviation,
and the numbers to the upper left of each bar indicate the maximum number
of network partitions present at one time in any of the 25 trials represented
by the bar.

to be verified using actual robots and wireless communication
equipment. There are also a number of questions to be further
explored in simulation as well. We will determine the effect
of τ in environments with obstacles that have high PAF
values. Experiments will also be conducted in environments
with office building like structures (i.e. an environment with
rooms, hallways, doorways, etc...). The algorithm for the
adaptive topology will be changed to remove the possibility
of the “live lock” situation that we occasionally encountered
in the course of the experiments presented here. We also plan
to explore signal strength based coordination in the context
of other tasks. These tasks could include finding wireless
nodes in the environment and maintaining a network between
them, or maintaining connectivity between two or more nodes
cooperatively addressing some task. Both of these tasks require
that additional constraints be placed upon the teams. In these
tasks, any of the wireless nodes addressing task goals would
act much like the team leader, but since there are two or more
of such nodes, control methods will need to be developed to
address any conflicting constraints imposed by leader nodes.
These control methods may need to position robotic resources
in anticipation of the possible motions of the leader nodes to
prevent the loss of communication. There may also need to
be additional constraints placed on leader nodes to prevent
situations where it would be impossible for the other nodes
to maintain a connected network. This may require explicit
coordination between the multiple leaders.
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