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Abstract— It can be difficult to generalize the solutions to
grasping and manipulation problems because even small dif-
ferences in problem context can require qualitatively different
solutions. For example, small changes in the shape of an object
to be grasped can necessitate different grasp strategies. In this
paper, we introduce the action schema framework that represents
generalized skills in a functional way such that all viable ways
of accomplishing a task are represented as instantiations of
the generalized skill. We also propose an on-line algorithm for
learning how to instantiate the skill in a context-appropriate way.
We test this approach with a robotic grocery bagging task where
a dexterous humanoid robot learns to make correct qualitative
decisions regarding how to grasp everyday grocery items and
drop them in a paper bag.

I. INTRODUCTION

A key problem for robotic grasping systems is that it
is difficult to generalize a single grasp solution to all the
different grasp scenarios a robot is likely to encounter in an
open environment. This is because relatively similar grasping
problems often require kinematically different solutions. For
example, small differences in object shape can have a big
effect on how many fingers the grasp should use. Similarly,
small differences in object location have significant bearing on
whether a humanoid robot should use its left or right hand and
whether an over-hand or under-hand grasp is more appropriate.
A robot must be able to evaluate these different grasp strategies
as equally valid alternatives, and be able to select the correct
strategy in any given situation. In this paper, we propose a
control-based framework that corresponds functionally similar
behaviors with a single generalized solution. We propose an
algorithm that learns instantiations of the generalized solution
that are appropriate in different problem contexts.

Humans select grasps from a large repertoire based pri-
marily on object characteristics and task requirements. With
respect to object characteristics, grasp selection is related
to object shape, size, and weight. For example, Schlesinger
identifies a grasp posture known as “spherical prehension” for
grasping cylinders and “hook prehension” for grasping heavier
objects [1]. Cutkosky enumerates sixteen different types of
power and precision grasps and associates them with different
objects and tasks [2].

The close relationship between human grasps and object
and task characteristics suggests an approach to automated
robot grasping whereby the robot assesses object and task
characteristics and responds by producing the corresponding

Fig. 1. Dexter prepares to drop a spray bottle containing multi-purpose
cleaning solution into a paper grocery bag.

grasp. Using this approach, Cutkosky and Howe proposed
an expert system that associated desired grasp characteristics
with a grasp label based on human grasp associations [3]. In
an attempt to develop an association that generalizes to new
objects, Iberall proposed using a neural network to learn the
association between object and grasp type and an appropriate
selection of palmar or (finger) pad opposition [4].

Elements of this approach to grasping have been tested
in the context of real robot experiments. Kamon, Flash, and
Edelman proposed approximating the relationship between
grasp parameters and resulting grasp quality using a nearest-
neighbor approach [5]. Moussa proposed a similar approach
where the system learns an object-centric homogeneous trans-
form that correctly positions the gripper based on trial-and-
error experience [6]. Both of these approaches make all
grasping decisions in a single step: qualitative grasp decisions
are made by the same mechanism that resolves the fine details
of contact placement. In addition, both of these approaches
use vision as their only sensory modality; it is not clear how
non-visual information could be integrated into these systems.

In this paper, we present an approach to learning to apply
general skills in new situations known as the action schema
framework, and apply it to the grasping problem. The action
schema specifies generalized behaviors in terms of abstract
actions derived from “natural” classes of controllers. Because
each abstract action is associated with a set of different
controllers, the generalized behavior expressed by the action



schema can be instantiated in many different ways. Using
an on-line algorithm, the system learns to associate problem
context with the corresponding instantiation. We demonstrate
this approach in a grocery bagging task where a humanoid
robot reaches to and grasps various grocery items and drops
them into a paper bag. The system learns to associate general
visual features such as blob height and width with correct
instantiations of a localize-reach-grasp action schema. This
approach decomposes the problem into a high-level part where
qualitatively correct actions are learned and a low-level part
where closed-loop controllers specialize in solving sub-tasks.

This paper is organized as follows. Section II reviews
a grasp control technique and the control basis approach.
Section III proposes the action schema framework for learn-
ing context appropriate instantiations of generalized grasping
behaviors. Last, Section IV describes experimental work that
demonstrates the utility of this approach.

II. BACKGROUND

This paper is predicated on a control-based approach
whereby closed-loop controllers are combined concurrently
and sequentially to generate and represent robot behavior. We
draw upon previous work in the areas of grasp control and the
control basis [7]–[11].

A. Grasp Control

In the control-based approach to grasp synthesis, a grasp
controller displaces contacts toward better grasp geometries
as part of a closed-loop process. These approaches use tactile
feeback to calculate an error gradient and displace grasp
contacts on the object surface. After making light contact
with the object using sensitive tactile load cells, the controller
displaces contacts toward minima in the grasp error function
using discrete probes [7] or a continuous sliding motion [10].

Grasp controllers descend an artificial potential ��� derived
from wrench error���	��
�� 
��� 
� � ���������� 
� � (1)

where 
� � is the contact wrench at the ����� contact calculated
using the point contact without friction model [7], [8]. The
control law converges when the contacts have been displaced
to locations where the net applied wrench is minimized. If the
minimum corresponds to zero net wrench, then, in the presence
of friction, such a grasp achieves necessary conditions for
wrench closure because it fulfills the conditions for non-
marginal equilibrium. Non-marginal equilibrium requires the
contact forces achieving net zero force lie strictly inside their
corresponding friction cones and has been shown to be a
sufficient condition for wrench closure [12]. This is equivalent
to the grip Jacobian having a non-trivial nullspace.

B. The Control Basis Approach

When using a control-based approach to solve multi-step
tasks, a framework is needed that allows controllers to be
sequenced in an organized way. The control basis framework

accomplishes this by organizing the set of viable controllers
and providing a robust way of evaluating system state [11].

1) Controller Synthesis: The control basis can systemati-
cally specify an arbitrary closed-loop controller by matching
an artificial potential function with a sensor transform and
effector transform. The potential function specifies controller
objectives, the effector transform specifies what degrees of
freedom the controller uses, and the sensor transform imple-
ments the controller feedback loop. For example, consider a
reach controller. The sensor transform specifies the goal con-
figuration of the end-effector. The effector transform specifes
what degrees of freedom are used to accomplish the task.

In general, the control basis realizes a complete con-
troller by selecting one potential function from a set� � � � � � ��� � �!� � � , one sensor transform from a set " ��$# � � # � � � �!� � , and one effector transform from a set % ��'& � � & � � �!� � � . Given

�
, " , and % , the set of controllers that

may be generated is (*) �,+ " + % . When specifying
a fully-instantiated controller, the notation � �.- / 0 denotes the
controller constructed by parameterizing potential function � �
with sensor transform

#
and effector transform

&
.

In this paper, we will utilize four reach controllers that reach
to the top or the side of an object using either the left or the
right hand. The set of sensor transforms compatible with the
reach potential function ��1 is " � �$2�3�4 ��5 ��6879� . The set of
compatible effector transforms is % � �$:<; �.= ; � (standing for
“left hand” and “right hand.”). Therefore the following reach
controllers are possible: � 1 - ��>�?@ � (reach to the object’s top with
the left hand), � 1 - ��>�?1 � (reach to the object’s top with the right
hand), � 1 - A �CBED@ � (reach to the object’s side with the left hand),
and � 1 - A �FBED1 � (reach to the object’s side with the right hand).

We will also utilize four grasp controllers that grasp
an object using either two or three fingers on either the
left or right hands. The set of sensor transforms is " ��$:HGJI � :KG'I9L �M= GJI �M= GJINL � ; the elements of this set stand for “left
hand, fingers one and two,” “left hand, fingers one, two,
and three,” “right hand, fingers one and two,” etc. Assum-
ing that each of the grasping sensors is actuated, there is
a correspondance between sensor and effector transforms:% � �$:HGJI � :KG'I9L �M= GJI �M= GJINL � . After eliminating instantiations
of ���E1MO A ? that do not make sense, the four possible grasp
controllers are: � � - @ � �@ � � (grasp with two fingers on the left hand),� � - @ � �.P@ � �.P (grasp with three fingers on the left hand), � � - @ � �@ � � (grasp
with two fingers on the right hand), and � � - @ � �MP@ � �MP (grasp with
three fingers on the right hand).

2) Discrete Controller State: The control basis approach
measures system state in terms of controller dynamics. At any
point in time, the instantaneous error and the instantaneous
gradient of error can be evaluated. Although the more general
system dynamics can be treated [13], in this paper, we will
consider only controller convergence (convergence is charac-
terized by a low error and error gradient) to establish system
state. For example, the state of having grasped an object with
some effector is represented by the convergence status of a
grasp controller parameterized by that effector transform.

Controller error is calculated by evaluating the controller’s



potential function � for a particular sensor transform
#

. LetQ
be the set of compatible potential functions and sensors:Q ) �R+ " . Then system state can be defined to be the

elements of
Q

that are converged:5'S � �UT � � � #�VJWYX Q - � � is converged for
#UV

with low error � �
(2)

The set of all states that can be represented this way is the
power set

I9Z
. For example, if the system is in state 59S ) Q

,
then

T � � � # V W[X 5 S when � � is converged for
# V

with a low
error. If

T � � � # V W]\X 5 S , then either � � is not converged for
# V

,
or it converged with a high error.

III. GENERALIZED GRASPING POLICIES

Successful grasping requires the robot to be able to handle a
wide variety of slightly different problem contexts such as dif-
ferences in object size, shape, and location. A key difficulty is
that similar grasping problems can require relatively different
grasping solutions. For example, a tall object might be grasped
from the side while a shorter object might be better grasped
from the top. Rectangular objects are probably best grasped by
opposing two fingers while round object may be better grasped
with three or more fingers. Whether the robot grasps using the
left or right hand should depend on the location of the object.
While these grasp problems differ only in degrees, they can
require the robot to behave in geometrically different ways. In
order to solve grasping problems like this, it is insufficient
to adapt a solution to different problem contexts by just
making small tweaks to end-effector trajectories. Instead, the
focus should be on developing a representation of functionally
similar grasping policies that generalize well.

A. Equivalence Classes of States and Actions

Our representation of generalized behavior is based on
equivalence classes of actions and states. We introduce ab-
stract actions and abstract states that roughly correspond
to the notion of generalized states and actions and develop
a mapping from functionally similar controllers to abstract
actions and from functionally similar states to abstract states.
These two mappings will allow us to represent the set of
functionally similar behaviors.

By specifying controllers in terms of the triple
T � � # � &^W , the

control basis approach can be considered to factor the control
objective,

T � W , from sensor and effector parameterizations
to create a partition on ( . Controllers that share the same
potential function are therefore in the same equivalence class.

Recall that the set of possible controllers ( is a subset of�_+ " + % . The function`ba (dc � �e` THT � � � # V � & S WMW � � � (3)

maps the space of controllers into the space of potential
functions by ignoring sensor and effector parameterization. For
example, consider two reach controllers: �f1 - ��>�?@ � and �g1 - A �CBED1 �(where

:h;
is short for “left hand” and = ; is short for “right

hand.”) These two controllers are in the same class because

they both share the reach potential function � 1 . We also define`gi � to be the inverse of ` :` i � T�j�kCW � �$jlXnm - ` T�jUW � j�k � � (4)

The partition on controllers induced by ` immediately
suggests a set of abstract actionsm k ) � � (5)

Assuming that any controller that can be executed is consid-
ered an action,

m )o( , then Equation 3 can be described as`pa m c m k
. This equation maps the underlying actions

m
onto abstract actions

m k
.

Controller equivalence classes induce equivalence classes of
states. A state is defined to be the set of pairs

T � � � # V WqX Q
that are converged. Two states are considered to be in the same
class when the system is converged for the same potential
functions in both states. This is defined formally by mapping
states rs) I$Z

onto a set of abstract states

r k ) I9t
(6)

as follows: u a rvcwr k � (7)u T 5 S W � � � � X � - x # V X " s.t.
T � � � # V WYX 5 S � �

This equation maps underlying states r onto abstract states r k
.

For example, two underlying states 5 � � �yT � � � # � W � T � � � # � W �
and 5 � � �UT � � � # � W � T � � � # P W � are in the same class because
u T 5 � W � u T 5 � W � � � � � � � � . The abstract state

� � � � � � �
describes the condition that � � is currently converged for some
sensor transform and � � is also converged for some (possibly
different) sensor transform.

B. An action schema

Abstract states and actions are used to represent functionally
similar behaviors. We introduce the action schema framework
that encodes a generalized behavior that can be mapped onto
a set of functionally similar behaviors.

The action schema is defined in terms of a set of abstract
states r k ) I t

, abstract actions
m k ) �

, an abstract policy z k ,
an abstract transition function { k

, and an abstract goal state5 k� . It is defined formally as the tuple:| �~} r k � m k � z k � { k ��5 k�8� � (8)

The abstract policy z k a r k c m k
is a rule for selecting

the abstract action to execute given the current abstract state
(notice that z k is defined differently than ( ). This policy
is assumed to be deterministic. It may be hand-coded, it
may come from an observation of a successful teleoperated
sequence, or it may derive from an autonomously learned
policy. The deterministic transition function { k a r k + m k cr k � { k T 5 k� � j k W � 5 k��� � specifies what abstract state 5 k��� � the
schema expects to arrive in when

j k
is taken from 5 k� . The

goal abstract state 5 k� X r k
encodes the objective of the policy.

The right side of Figure 2 illustrates an action schema that
represents a generalized grasping behavior. The schema policy



and transition function specify that (starting from abstract state5 k � ) the visual localize abstract action, � @ >.� O @ �C��D , is to be taken
followed by the abstract reach action, � 1 D O �K� , and the abstract
grasp action, � �E1MO A ? . The four circles represent abstract states5 k � ��5 k� �E5 kP ��5 k� X r k

where 5 k� is the goal state and the arrows
represent abstract actions.

C. Instantiations of the action schema

The generalized behavior encoded by the action schema can
be instantiated by multiple functionally similar behaviors. This
subsection describes an approach to instantiating generalized
behavior whereby the system first determines which abstract
action is supposed to execute next and then enumerates all the
functionally similar instantiations of that action.

Recall that r k + m k
is the abstract space and r + m

(wherem ),( and r,) I9Z
) is the underlying space. Generalized

behavior encoded by the abstract policy z k maps to a set of
policies z T 5 � W�X��lT 5 � W in the underlying space where�lT 5 � W � ` i � T z k T

u T 5 � WHWMW � (9)

In this equation,

u
and `�i � are the state and inverse action

mappings defined in Equations 7 and 4 that map states and
actions, respectively.

In Equation 9,

u T 5 W maps the underlying state onto an
abstract state. The schema’s abstract policy z k returns an
abstract action associated with this abstract state. Finally, `fi �
projects this abstract action onto a set of underlying actions
that are consistent with the schema policy. Any action in this
set is a valid instantiation of the action schema’s policy.

This process of policy projection is illustrated in Figure 2.
Suppose the system is in underlying state 5 � X r . The mapping
u

projects 5 � onto abstract state 5 k� X r k
. The abstract policyz k specifies that the abstract reach action, � 1 D O �K� , is to be taken

from state 5 k� . Finally, the inverse mapping ` i � projects � 1 D O �K�
onto a set of reach actions

j � � j � � j P � �!� � � j � X�m
. � 1 D O �K� is

instantiated by one of the four reach controllers � 1 - ��>�?@ � , � 1 - ��>�?1 � ,��1 - A �FBED@ � , or �g1 - A �CBED1 � described in Section II.
In addition to the instantiations of ��1 D O �K� , we allow one

instantiation of � @ >M� O @ �F��D and four instantations of �g�E1.O A ? .
In principle, � @ >.� O @ �C��D can be instantiated by many different
localize controllers that are parameterized with different sensor
and effector transforms. Depending upon which instantiation
is selected, the system can selectively localize different objects
using different sensory modalities including visual, auditory,
or haptic. In the experiments presented in the paper, we allow
a single instantiation of the localize controller that visually
determines the location, height, and width of whatever object
is placed in front of the robot. This controller segments blobs
that correspond to the object in two stereoscopic image planes.
Object location is determined by triangulating on the centroid
of the two blobs. The horizontal and vertical extent of one of
the blobs is used to roughly approximate object shape. While
this approach does not yield precise shape information, we
expect simple blob statistics such as these to generalize well
to new objects.
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Fig. 2. Right: the localize-reach-grasp action schema. Left: possible instan-
tiations of the action schema.

Similarly, � �E1.O A ? is instantated by one of the four grasp
controllers � � - @ � �@ � � , � � - @ � �.P@ � �.P , � � - 1 � �1 � � , or � � - 1 � �.P1 � �.P . Although this
paper only uses physical grasp contacts, we note that grasp
controllers can also be parameterized by virtual contacts [4],
[9]. By adjusting the set of virtual contacts used by the grasp
controller, �g�E1MO A ? can be instantiated by almost any type of
grasp, including “whole body” grasps [9].

D. Context Differentiation

Although it may be possible to instantiate the action schema
with a number of functionally similar behaviors, not all in-
stantiations may be appropriate in a given problem context. In
particular, it is desirable to select an instantiation of the action
schema that will enable the system to reach the goal state. We
refer to the process of selecting instantiations of the action
schema based on problem context as context differentiation.

The goal of context differentiation is to find a policy z
among the instantiations of the action schema policy that
maximizes the chance of reaching a schema goal state. Let� T 5 � W be the probability of reaching a goal state starting from5 � X r . If the system is already at a goal state, then

� T 5 � W is
trivially equal to one. Otherwise, the probability of reaching
a goal state can be calculated by using a form of one-sweep
dynamic programming that recursively evaluates

� T 5 W using
the following equation:� T 5 � W � ���9�O'�8��� A��h�9� T 5 � � jUW � (10)

where

� T 5 � � j�W � �A ����� �8��� A �H� O �
� T 5 ��� � WK�bT 5 ��� � - 5 � � jUW � (11)

In Equation 11, � T 5 � � jUW is the set of next states that are
consistent with schema constraints and can be reached from5 � by taking

j
. The recursive process terminates when a goal

state is reached.
Optimal actions can be discovered by enumerating all

possible schema-consistent actions and evaluating how each
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Fig. 3. Instantiations of the localize-reach-grasp action schema used in this
paper’s experiments.

of them will affect the probability of reaching the goal state.
If the system is in state 5 � , then the action that yields the
maximum probability of reaching a schema goal state is:j�� O�� � �9¡.¢ ���$�O'�8�£� A��9� T 5 � � jUW � (12)

This approach of evaluating different action choices in terms
of the probability of reaching a schema goal state is the
basis for an on-line context differentiation algorithm. This
algorithm explores the space of actions that adhere to schema
constraints and discovers instantiations of the generalized
policy that maximize the chances of reaching a schema goal
state. In the process of repeatedly executing instantiations of
the schema policy, this algorithm acquires relevant experience
and improves the likelihood that it will reach a schema goal
state. At each step, all possible schema-consistent actions are
evaluated to determine which is most likely to lead to a schema
goal state using Equation 12. This algorithm is outlined below:

FUNCTION DIFFERENTIATE ACTION SCHEMA
1. Repeat
2. Get current state 5 � X r
3. Let

�lT 5 � W � `gi � T z k T
u T 5 � WMWHW

4. Evaluate
j � O � � �9¡.¢£���$� O'�8��� A � � � T 5 � � jUW

5. Execute
j � O��

6. Get next state 5 ��� � X r
7. Update transition model

�bT 5 ��� �8- 5 � � jUW
8. While

u T 5 � W is not the Schema goal state.

In the absence of any experience, the DIFFERENTIATE
ACTION SCHEMA algorithm selects random instantiations of
the abstract reach and grasp actions. As experience accrues,
better estimates of transition probabilities become available.
In the case of the localize-reach-grasp action schema, these
transition probabilities correspond to estimates of the chances
of success of different reach or grasp controllers given the
current state of the system and the set of visually localized
object properties.

For example, Figure 3 illustrates the possible instantia-
tions of the localize-reach-grasp action schema used in the

present experiments. The probability
�b¤ 5 � � - � � - 1 � �.P1 � �.P �E5!¥9��¦ :h3 ¦.§

represents the probability of a three-fingered grasp succeeding
given that the robot has already reached to the side of the
object with the right hand and given blob parameters such as
object position and horizontal scale. Similarly, the probability�b¤ 5!¥ - � 1 - ��>K?1 � �E5 � ��¦ :�3 ¦.§ encodes the chances of being able to
reach to the top of an object given an object’s position
(where position is a component of blob parameters.) As
these estimates of transition probabilities improve, the actions
selected by Equation 12 in the DIFFERENTIATE ACTION
SCHEMA algorithm are more likely to be successful reaches
and grasps. This should produce monotonic improvement in
average localize-reach-grasp schema performance measured in
terms of the frequency of grasp success.

IV. EXPERIMENTAL VALIDATION: BAGGING GROCERIES

We performed a set of experiments in order to demonstrate
the ability of the action schema approach to differentiate
reach and grasp contexts appropriately. In our experiments,
a humanoid robot learned to reach to and grasp grocery items
and drop them in a paper bag as shown in Figure 1. The
main experimental questions were: (1) does the action schema
learn to appropriately differentiate reach and grasp behavior
based on context, and (2) does the action schema improve its
performance with experience?

A. Method

Dexter, the UMass bi-manual humanoid robot, was used to
test our approach [14]. Dexter consists of a 4-DOF bisight
head and two whole-arm manipulators (Barrett Technologies,
Cambridge MA), each Barrett WAM equipped with a 3-finger,
4 DOF Barrett Hand. Mounted on the tip of each Barrett hand
finger is a 6-axis force-torque sensor.

The localize-reach-grasp action schema was trained using
four items that are representative of a large class of items
that can be purchased in a grocery store: a 828mL bottle
of laundry detergent, a 946mL spray bottle containing multi-
purpose cleaning solution, a 300ft roll of all-purpose Jute
Twine, and a 13Oz container of Vaseline. These objects were
placed at arbitrary locations on a table in front of Dexter within
reach of its left or right hand. The robot grasped these objects
and placed them in a paper bag.

We tested our approach using the localize-reach-grasp action
schema. Dexter was capable of reaching to the side or top of
the object using either the left or right arm. In addition, Dexter
could grasp the object using either two or three contacts on
either hand. The localize control action observed the position
and horizontal and vertical scale of whatever object was placed
in front of the robot. After grasping the object, the action
schema applied a grasping force (hold), lifted the object, and
placed it in a grocery bag.

The DIFFERENTIATE ACTION SCHEMA algorithm was
tested by repeatedly attempting to grasp (starting from a
default robot configuration) different objects placed at an
arbitrary location on a table in front of the robot. We conducted
two experiments, each consisting of 67 attempts to reach and



grasp an object. At the beginning of both experiments, the
system had no experience and reach and grasp actions were
randomly selected from among the valid mappings of the
schema. However, as experience accumulated, the transition
model was updated and performance of the action schema
improved.

B. Results

Figure 4a shows the action schema’s rate of success as a
function of time. The horizontal axis is the episode number
and the vertical axis is the probability of success. “Probability
of success” is a moving average with a five-episode window
where each point is the average success (where “success” is
defined as either 1 or 0) of the last two episodes, the current
episode, and the next two episodes.

Figures 4b and 4c plot the action schema’s estimate that
each of four instantiations of the schema policy will succeed
versus the number of training episodes for two different
object types. Figure 4b illustrates how the probability that
four possible action schema instantiations are selected evolves
as a function of time when small objects (the twine or the
Vaseline) are placed on the table. Figure 4c illustrates the
evolution of the same probabilities when tall objects (the
cleaning solution squirt bottle and the laundry detergent) are
placed to the robot’s left. Notice that the four probabilities
need not sum to one because it is possible for more than
one policy instantiation to reliably grasp a particular class of
objects.

C. Discussion

With no experience, the DIFFERENTIATE ACTION SCHEMA
algorithm initially selects reach and grasp actions randomly,
and often fails to place the object in the bag. As experience
accrues, actions that are more likely to reach the schema goal
are selected. Figure 4a shows that as experience accrues, the
system becomes more likely to succeed by placing objects in
the bag.

A more detailed view is portrayed in Figures 4b and 4c.
As the system gathers more experience, its estimate that each
of four policy instantiations will succeed for the two different
object types changes. For both large and small objects, all
policy instantiations are initially assumed to succeed. The
probability that a left handed top grasp succeeds quickly goes
to zero for small objects located on the robot’s right; this
reflects the fact that the left hand cannot reach to the top of
these objects. Nevertheless, it is possible to use the left hand
to reach to the side of objects on the right. However, since side
grasps do not work well for small objects, Figure 4b shows
that these grasps succeed only about 65% of the time. The
only grasp that works well for small objects on the right is
the right-handed top grasp. Figure 4c shows that tall objects
located on the left can be grasped with either hand using a
side grasp. Due to the geometry of the detergent and squirt
bottle, top grasps always fail on these objects. The graph also
shows that the system has difficulty reaching all the way to the

left with the right hand and that the system therefore prefers
using the left hand to grasp these items.

V. CONCLUSION

The variation in the size, shape, and weight of everyday
objects requires different objects to be grasped in different
ways. Therefore, a dexterous robot capable of grasping ev-
eryday objects must have a large number of different reach
and grasp choices available and must be able to select a
context-appropriate reach-grasp policy. This paper proposes a
generalized representation of a skill that leads to a number
of functionally similar behaviors. Through the process of
context differentiation proposed in this paper, the system
autonomously discovers context-appropriate instantiations of
this generalized skill. We show how this approach applies
to localize-reach-grasp problems and develop a humanoid
grocery-bagging robot based on these principles. The robot
learns to associate general visual features regarding location
and shape with the correct reach and grasp strategy for several
grocery items.

A desirable characteristic of any system that learns to grasp
is the ability to generalize to new objects. Although this
ability has not yet been tested with our system, we expect
reasonable generalization because reach and grasp decisions
are conditioned on generic visual characteristics of the object
such as location and horizontal and vertical scale. In the
future, we hope to verify this in the context of a richer set
of blob descriptors by testing performance with a different set
of objects than was used during learning.
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