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Abstract—In the control-based approach to robotics, complex robot [1]. Martinson, Stoytchev, and Arkin use RL to solve
behavior is created by sequencing and combining control primi- g tank intercept problem using a small discrete set of states
tives. While it is desirable for the robot to autonomously learn the and control actions [4]. Rosenstein and Barto use a version

correct control sequence, searching through the large number of fRL to | t teri trollers that participate in
potential solutions can be time consuming. This paper constrains © 0 learn 10 parameterize controllers parucipate

this search to variations of a generalized solution encoded in @ robot weightlifting task [5]. Unfortunately, the solutions to
a framework known as an action schema A new algorithm, many practical robot problems are far too complex to learn

schema structured learningis proposed that repeatedly executes gutonomously starting from a low-level and general set of
variations of the generalized solution in search of instantiations control primitives. In each of the above approaches, this com-

that satisfy action schema objectives. This approach is tested lexity i db I Ivi ianificant struct
in a grasping task where Dexter, the UMass humanoid robot, piexity IS managed by manually supplying signiicant structure

learns which reaching and grasping controllers maximize the t0 simplify learning. Huber prunes the number of potential
probability of grasp success. actions that the robot must explore. Martinsem,al. hand-

craft specific states and actions for the task. Rosenstein and
Barto manually specify a control structure and autonomously
In contrast to the sense-think-act paradigm, control-bask@drn parameters that optimize its performance. The current
and behavior-based approaches to robotics realize desipagher acknowledges that such structure may be necessary in
behavior by sequencing and combining primitive controllegsractical robotics problems and proposes a new framework that
or behaviors. These approaches depend on a higher-lagahspired by the Piagetian notion of a schema for specifying
decision-making mechanism that selects the correct primitiviigs structure.
to execute. One way to automatically learn the correct se-Piaget loosely defines a schema to be a mental represen-
guence of primitives is to encode the problem as a Markov Dition of an action or perception [6]. Through the process of
cision Process, and solve it using Reinforcement Learning [&ssimilation the child adapts an existing schema to incorporate
[2]. However, in the absence of anpriori model of controller new experiences, encoding these experiences as variations on
performance, this approach requires the robot to explore tiwe same general structure. Piaget proposes that infants posses
effects of executing every action in every state. Although treebasic tendency to exercise existing schemas, especially when
system designer can manually constrain the potential actitiose structures are not “well formed.”
choices [1], the need to explore a large number of actions carlfwo important previous approaches to incorporating the
slow down learning. The current paper addresses this problaption of a schema into a computational framework are that of
by encoding a generalized solution as aation schema Arbib and Drescher [7], [8]. Arbib’schema theorproposes
Learning speed is increased by constraining the systemtim major types of schemas: the perceptual schema and
consider only variations of this generalized solution. A nethe motor schema [7]. A perceptual schema is a process
algorithm calledschema structured learnindiscovers which that responds to only a specific, task-relevant concept. A
instantiations of the action schema are appropriate in differanbtor schema is a generalized program that describes how to
problem contexts. This paper explores this approach in thecomplish a task. Schema theory proposes that a large number
context or reaching and grasping. This paper is an expansifrperceptual schemas and motor schemas can interact in the
of our earlier work reported in [3]. The current paper bettarontext of acoordinated control programthereby generating
defines optimality in the context of the action schema arntelligent behavior [7]. Arkin applies some of these ideas
proposes a sample-based version of the algorithm. to behavior-based robotics [2]. Gary Drescher also develops
Reinforcement learning (RL) is an attractive approach ® schema-based approach to intelligent behavior based on
robot learning because it allows the robot to autonomoudBiagetian ideas [8]. Learning starts with a few schemas and
learn to solve different problems using a single underlyingrimitive concepts that represent basic motor activities and
set of control actions. For example, Huber and Grupen ugerceptions. By executing schemas, the system discovers new
RL to learn autonomously a rotation gait for a quadrupedebncepts and proposes new schemas for interacting with these

I. INTRODUCTION



concepts. controller constructed by parameterizing potential functign
This paper proposes a new approach to robot learning bagéth sensor transforna and effector transform.
on a generalized representation of robot behavior known asThe control basis framework also allows composite con-
the action schema. The action schema mayirtstantiated trollers to be constructed that execute multiple constituent con-
by specific implementations of the generalized behavior. Arpllers concurrently. Each constituent controller is assigned a
instantiation is considered succeedor fail depending upon priority, and controllers with lower priority are executed in
whether it results in desired state transitions specified by tthe nullspace of controllers with higher priority. Composite
action schema. A new on-line learning algorithm, schengntrollers are denotedy,|7 < ¢4|7, where ¢|7 is said to
structured learning, is proposed that explores different igxecute “subject-to” (i.e. in the nullspace of) |7.
stantiations and discovers through a process of trial-and-erroSystem state is measured in terms of controller dynamics. At
which instantiations are most likely to succeed. This papany pointin time, the instantaneous error and the instantaneous
explores the action schema approach in the context of robagiadient of error can be evaluated. Although the more general
reaching and grasping. Schema structured learning discovgystem dynamics can be treated [9], in this paper we will
how to select appropriate reach and grasp control actioegnsider only controller convergence to establish system state.
based on coarse visual information including object locatiokor example, the state of having grasped an object with some
orientation, eccentricity, and length. A series of experimengéfector is represented by the convergence status of a grasp
are reported where Dexter, the UMass bimanual humangiantroller parameterized by that effector transform.
robot, attempts to grasp objects using various different reachThis paper’s ideas are illustrated in the context of a
and grasp primitives. The robot learns to select reach and gra§i£ALIZE-REACH-GRASP action schema that implements
primitives that optimize the probability of a successful grasgeneralized grasping behavior. ThecALIze controller in
Section Il gives a brief overview of theontrol basis LOCALIZE-REACH-GRASR ¢|7, segments the object and
approach to robot behavior used in this paper and descrilsé@racterizes the resulting blob in terms of its three-
controllers used for localizing, reaching, and grasping. Sedimensional Cartesian position, orientation, length, and eccen-
tions Il and IV describe the action schema framework, détcity.
fine the notion of the optimal policy instantiation, and give In this paper,LOCALIZE-REACH-GRASP Uses tWOREACH
an algorithm, schema structured learning, for autonomougigntrol primitives: a reach-to-position primitive, |7, and
discovering these optimal instantiations. Finally, Section ¥ reach-to-orientation primitive;z;m\f(e). Whenqbrpﬁ(m) exe-

presents experimental results. cutes on its own, the robot reaches to an offset along the
object major axis without regard for orientation. When reach-
Il. CONTROL-BASED REACHING AND GRASPING to-orientation executes subject to reach-to—positmﬁ(e) N

o(x

Drplr ), then the robot attempts to achieve a desired orien-
_ AMNIion while reaching to a position. Orientation is measured
uses Huber and Grupentontrol basisframework [1]. ThiS i respect to the lines running from the contact set centroid
framework systematically defines a set of control pr|m|t|vel,<f;]rough each contactzmﬁ(a) orients the manipulator so that

and provides a robust and general way of representing Sys;}-ﬁ average angle between these lines and the object major

This paper’s development of schema structured learni

state. This section describes the control basis framework s is g

detail_s controllers that are used for localizing, reaching, andp \ op controllers displace contacts toward good grasp con-
grasping. . _ . . figurations using feedback control [10], [11]. This approach
The control basis can systematically specify an arbitrafyeg tactile feedback to calculate an error gradient and displace
closed-loop controller by matching amtificial potential func- 454 contacts on the object surface without using a geometric
tion with a sensor transformand effector transformil1]. The = piect model. After making light contact with the object using
artificial potential specifies controller objectives, the effectQlgnitive tactile load cells, the controller displaces contacts
transform specifies what degrees of freedom the controligf, o4 minima in the grasp error function using discrete

uses, and the sensor transform implement_s the_ Contrdﬂﬁbbes [10] or a continuous sliding motion [12]. This paper
feedback loop. For example,REACH controller is defined by |,qag tWOGRASP controllers:¢, |2123 and ¢,|7'2. ¢,|72¢ uses
"L glTi2 " K

T123 1 T123

a REACH artificial potential, a sensor transform that specifi%ree physical contacts to synthesize a grasp, whijg
. . ) b
the goal configuration of the end-effector, and an effectopmpines two physical contacts intwiatual finger[13] that is

transform that specifies what degrees of freedom are used.fpsjgered to apply a single force that opposes a third physical
accomplish the task. contact.

In general, the control basis realizes a complete con-

troller by selecting one artificial potential from a set I1l. THE ACTION SCHEMA
& = {¢1,¢9,...}, one sensor transform from a sEt = Although the control basis gives the robot access to a
{o1,09,...}, and one effector transform from a s&t = general-purpose set of control primitives, the large number of

{r1,72,...}. Given®, X, and T, the set of controllers that action choices can make autonomous trial-and-error learning
may be generated il C & x ¥ x T. When specifying computationally complex. The action schema framework is a
a fully-instantiated controller, the notatiop;|2 denotes the systematic way of structuring a trial-and-error robot learning
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Fig. 1. The localize-reach-grasp action schema. The circles with binary QO oot
numbers in them represent abstract states. The arrows represent abstract
actions and transitions. a(e) a(x)

(H’O|T 4(R’pl'l' _____—" (prp
problem by encoding a generalized robot behavior that con- g hp,p) Dot
strains the number of potential solutions that learning must
consider. The generalized behavior is represented by a policy
defined over an abstract state and action space. A one-to- @,
many mapping is defined between the abstract state and action
space and an underlying state and action space. The underlying © 11

space is assumed to represent system state and action with
the finest granularity available to the robot. This allows theg. 2.  Possible instantiations of theoCALIZE-REACH-GRASP action

action schema’s abstract policy to be translated into a numi§gema. The inverse action mappipg,', projects the abstragteACH action
onto the set of possiblREACH actions.

of policy instantiationghat define a set of potential solutions.
The action schema also specifies an abstract transition function

that defines desired transition behavior in the underlying space, _, : .

S Co ; aﬁ}_ ¢g~—* maps each abstract action to an equivalence class
The objective of schema structured leaming is to dISCOVS actions that perform the same function in different ways
which instantiations of an action schema’s abstract policy aée P e

. 1 .
most likely to result in transitions that are consistent with thg]:rg,lzg};’ f~ maps each abstract state to an equivalence class
abstract transition function. ' . ,

Let S x A’ be the abstract state-action space defined by theWhen the control basis is used, the abstract actions are
action schema, and lef x A be the underlying state-actionrepresemed by artificial potentials that can be instantiated
space that can represent possible robot behavior. The abstPciifferent choices for sensor and effector transform. In

policy is a mapping from abstract states to abstract actionsz,id |t|0|j, when compo.sn.e_ controllers are possible, arbitrary
subordinate control primitives may be added to create even

78— A (1) more instantiations. Controllers related to an artificial potential

This function deterministically specifies which abstract actio@]he abstract action) in this way are guaranteed to share

the system should take in any given abstract state. When fpstain charactenistic functionality. For examplel @CALIZE-

control basis is used with the action schema, abstract sta@@cg'GlR_ASR thi th"ree abs'][(ra”ct ac.tlon;sl,, Orp, ANAJ, Map
and actions can be defined in terms of artificial potentials. F‘@r underlying controflers as Tollows:

example, Figure 1 illustrates thieOCALIZE-REACH-GRASP

-1 o
action schema. The three abstract actigngLOCALIZE), ¢, “?1 (¢ = {WT(};EI) (3)
(REACH), and ¢, (GRASP), correspond to controllers stripped 9 (¢rp) = {7z € [0, 1]} U
of their parameterizations (leaving only artificial potentials). {hro|7D <6, |2@ |z € [0,1],60 € 0, ﬁ]}7
The circles illustrate the four abstract states, also derived | oo . 2
from artificial potentials. The abstract poliey, defines which 9 (09) = {9gl755 09l7i2}-

abstract actions are to be taken from abstract states: . . . .
In this example, the abstract actiop,, can be instantiated

7'(000) = ¢y (2) by ¢y|7:23 or ¢g|7:2 (either a three-fingered grasp or a two-
7'(001) = fingered grasp).

/ _ The state and action mappingg, and g, allow the ab-
7'(011) = &,

stract policy to be translated into a set of potential policy

For example, if the robot is in abstract stdt#0), thenn’ instantiations. This is accomplished by determining the set
executes abstract actiaf). of actions that are consistent with the abstract policy in a

The abstract policy is mapped to policy instantiations thgiven state. Assume that the system is in abstract state,
implement the same qualitative type of behavior. This policyhe abstract action specified hy(s}) can be projected onto
mapping is derived from state and action mappings that grodiset of equivalent underlying actions using the inverse action
together similar states and actions as follows. FetS — 5" mapping,g~* (7' (s})). Therefore, given the state and action
andg : A — A’ be state and action functions that uniquelynapping, the abstract policy;’, can be mapped onto any
assign each underlying state and action to an abstract sfgééicy, =, such that,
and action. The inverses of these functions are defined to be
f~Ys") =1{s e S|f(s) =5} andgt(a’) = {a € Alg(a) = Vs € S, w(sy) € B(sy), 4)



where IV. OPTIMAL POLICY INSTANTIATIONS

B(st) = g (7' (f(s0))). (5) The abstract policy encoded by the action schema maps
to many different policy instantiations. The goal of schema
These policies are callegolicy instantiationsof the abstract structured learning is to discover which policy instantiations
policy. maximize the probability of satisfying the action schema’s
This is illustrated in Figure 2. Suppose that the robot is imansition constraints. This is called thptimalpolicy instanti-
states, € S. The state mappingf, projects this state onto ation. This section defines the optimal policy instantiation and
(001) € S’. Sincen’(001) = ¢,,, the abstract policy takes., introduces the schema structured learning algorithm given in
from (001). Finally, the inverse action mapping; !, projects Table I.
this onto the reach choice@qbrp|i(”’)|x € 0,1} U{er|2" «
Srpl7 " € [0,1),6 € [0, 5]} N o
The action schema also defines transition constraints thaft€call that the abstract transition function defines how the
specify how the robot is to behave while executing a poIid&?bOt system must transition after executing actions. Ap action
instantiation. The desired behavior of the action schema S4cceeds when the resulting transition is consistent with these

deterministically characterized by the abstract transition fungonstraints and fails otherwise. A state-action trajectory will
tion be said to succeed when each component action succeeds.

An optimal policy instantiation,7*, is one that maximizes
the probability of a successful trajectory. LBf (a|s;) be the
probability of a successful trajectory, given that the system
t5?<es actiona € A, starting in states; € S, and follows
policy instantiationr after that. IfII is defined to be the set
of all possible policies, then

A. Definition of the Optimal Policy Instantiation

T :8 x A — 8. (6)

This specifies how the system must transition in response
executing the action. When taken from statec S, action
a € A must deliver the system to

sev1 € fTHT(f(50), 9(a)))- (7 P*(als;) = max P (als,) (10)

As long as actiorn € A causes the robot to transition tois the maximum probability of a successful trajectory taken
one of these next states, the action is saidstwceed If over all possible policies. This allows the optimal policy to be
the action causes a different transition, then the adiéals. calculated using,
The goal of schema structured learning is to discover which . .
policy instantiation maximizes the probability of meeting these ™" (s¢) = arg B (o) P (alst), 1)
transition constraints. _ _

For example, in the case of thecALIZE-REACH-GRAsp Where B(s;) = g~ (n'(f(s1))) (Equation 5) is the set of

action schema, the abstract transition function is defined to [§&tions that are consistent with the abstract transition function
’ when the system is in state € S. The optimal policy always

T'(000,¢;,) = 001 (8) selects the action that maximizes the probability of satisfying
T'(001, ) = 011 action schema transition constraints.

T'(011,¢,) = 111. B. Schema Structured Learning

o Schema structured learning autonomously discovers the

SUDE(%S;; that the robot is in state < S5, and executes optimal policy instantiations. The robot explores and models
$rp|= . If the system does not transition to a statg,1 € the expected success of different policy instantiations in or-
S, that maps tq011) € ', f(si+1) = (011), theng,, |7 der to estimateP*(a|s;). However, instead of directly using
fails. Equation 10, it is possible to use a dynamic programming

In schema structured learning, the robot continues to execafgproach to estimaté®*(a|s;). For convenience, we assume
actions in accordance with the abstract policy until an actiahat the outcome of a successful action is knavpriori,
fails or an absorbing state is reached. In th®CALIZE-

REACH-GRASP action schema(111) is an absorbing state. T : Sx A= 5, Ti(si,0) = s 12)
Bringing these pieces together, an action schema isGaven this assumption, the maximum probability of a success-
represented as a tuple, ful trajectory can be calculated recursively,
S = <S/,A/77TI,T/> ’ (9) P*(at|5t) = P(SUC¢5t7at) EB(I'II}E%X ) P*(a|T9(5tv at))? (13)

where S’ is the abstract state se#l’ is the abstract action where P(sucds,, a;) is the probability that action; succeeds
set,n’ defines the abstract policy, afdd defines the abstract from states;. Assuming thafl, is modeleda priori is a rea-
transition function. When defining an action schema, we wilonable assumption in many robot learning problems because
require that the path implicitly specified by and 7’ does the human designer frequently knows the desired state of the
not contain cycles. robot after a particular controller executes. However, in cases



TABLE | x10°
SCHEMA STRUCTURED LEARNING ALGORITHM

Function SCHEMA STRUCTURED LEARNING
While not in an absorbing state
Get current state; € S
Let B(s¢) = g~ (s¢) (' (f(51)))
Executer™(s¢) = arg max,cp(s,) P*(alst)
If action failed, break from loop.
Get next state; 1 € S
Update transition moddP(sucds;, a)
Repeat T

Median Init Moment Resid

ONoOGRLWDE

0 5 10 20 25 30

Epiésode
P : : ig. 3.  Results from the first experiment (grasping the vertical cylinder)
where this is not t,rue' a more complex version of Equation :E?owing median initial grasp controller error (moment residual error) as a
can be used that is based on estimate®@f,,1|s;,a) rather function of trial. A high error indicates a poor grasp and a low error indicates a
than P(sucds;, a). good grasp. Note that median error reaches its lowest point after approximately
The schema structured learning algorithm is illustrated {7 &S
Table I. First, the robot assesses its current state and de-

termines which actions instantiate the abstract policy at thgthema structured learning. Assume that the robot is in state,
point (steps two and three). Next, the robot executes an actign- g and thata’ = 7 (f(s;)). Instead of evaluating every
that is estimated to be most likely to be part of a successfgktantiation of the abstract policy in step three, the sample-
trajectory (step four). Finally, the transition model is updateghsed version of the algorithm only evaluates a fixed number
and the process repeats. Note that as long as the a|9°ritth'~°samples,Dst (a') € g~*(a’), drawn from the probability
probability estimates are correct, then Equation 13 gives thggribution P(sucds,, a). This sample set is updated every

optimal policy instantiation. Therefore, as long as schemgne the estimate of’(sucds;, a) improves.
structured learning’s probability estimates converge to their

true values, the algorithm can be expected to converge to a V. EXPERIMENTS
set of optimal policies. Two experiments were performed to characterize the learn-
Schema structured learning based on the action scheimg performance of schema structured learning in the context
framework can be expected to learn faster than learnio§ grasp synthesis. Both experiments were performed using
algorithms that solve Markov Decision Processes (MDPBexter, a bi-manual humanoid upper torso consisting of two
for at least two reasons. First, the action schema’s abstrBetrrett arms, two Barrett hands, and a Bisight head. In the
policy reduces the search space of learning. Second, schdims experiment, Dexter learned to localize, reach, and grasp
structured learning only estimates the probability of succeastowel roll measuring 20cm high and 10cm in diameter by
- not the probability of arriving in every possible next statattempting to grasp it 26 times. At the beginning of each trial,
(P(sucdst,a) - notVs;11 € S P(si41]8t,a). Therefore, the the towel roll was placed vertically in approximately the same
algorithm must estimate fewer probabilities and learning caabletop location. Only three-fingered grasgs,/7!23, were

T123"°

be expected to be faster. allowed. On each trial, schema structured learning executed
) using theLOCALIZE-REACH-GRASPaction schema until either
C. Large Action Spaces the absorbing state was reached or an action failed. In either

Another key feature of schema structured learning is thedse, the trial was terminated, the system was reset, and a new
a sample-based version of the algorithm exists. This sampieal was begun. This experiment was repeated eight times.
based version is effective in large or real-valued action spaces$-igure 3 shows median grasp error as a function of trial
where it may be difficult to use other function approximationumber. This is the grasp error measured after reaching to the
techniques to estimate the optimal action. In the case of largigject, but before executing th&RASP controller. Before the
or real-valued action spaces, it is difficult or impossible t@Oth trial, the large median grasp errors indicate that schema
evaluate Equation 11 for all possible valueswfe B(s;). structured learning had not yet discovered how to grasp the
However, notice that actions with a high probability of succesewel roll. This means that theRASP controller must correct
are more likely to be part of a successful trajectory. Ithis poor configuration by displacing the contacts along the
particular, when the optimal policy instantiation has a higbbject surface toward a good grasp configuration. However,
probability of success, the action that maximiZe¥(a|s;) is by the 10th or 15th trial, the robot has learned to select an
also likely to be near the maximum dP(sucds:,a). This instantiation of theREACH controller that minimizes moment
enables a sample-based version of schema structured learm@gidual errors.
to use its estimate oP(sucds;,a) (derived from previous In the second experiment, Dexter learned to adjust its
experience) to bias its action sampling in step three (Table ¢rasp strategy based on the orientation of the object. A long
The above observation leads to a sample-based versiorbok measuring 7x7x27cm was alternately presented to Dexter
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Fig. 4. Results from the second experiment showing the two grasp strategies learned for the different box orientations. The contour plot in (a) shows that the
probability of success is maximized when the manipulator reaches to the center of the box and orients itself perpendicular to the box major axis. (b) shows
that position matters less when the box is presented vertically.

horizontally and vertically. Dexter attempted to grasp and lifthich maximizes the probability of satisfying action schema
this object 40 times usinglEDCALIZE-REACH-GRASP-HOLD- transition specifications. In an approach reminiscent of Piaget’s
LIFT action schema. In addition to attempting to reach amocess of assimilation, this paper proposes a sample-based
grasp the object, this action schema also applied a graspaigorithm, schema structured learning, whereby the robot
force and attempted to lift the object. The lift was onlyepeatedly executes instantiations of the action schema policy
considered to succeed when the object did not exert a lafgea search for optimal instantiations. The results show that the
moment about the contact points and it did not swing out sf/stem quickly learns how best to reach and grasp an object
the grasp or drop. On each trial, the action schema execugadl that the robot is able to adjust its strategy based on how
until either the absorbing state was reached or an action failad. object is presented.
Only two-fingered grasps were allowed.
The contour plots in Figure 4 illustrate the results of the ACKNOWLEDGMENT
second experiment. Both figures show the probability of graspThis work was completed while the first author was a
success as a function of orientation (vertical axis) and positisfident at the University of Massachusetts. This work was
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