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set of canonical grasps from this experience. Each of thaserical grasps can
then be used to parameterize a reach controller that brimgsabot hand into a
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1 Introduction

Manipulating one’s world in very flexible ways is a skill thiatshared only by a
small number of species. Humans are particularly skilleapgying their manipu-
lation abilities in novel situations using a range of eféest from hands and other
parts of the body, to tools. How can robots come to organizklearn knowledge
representations for solving grasping and manipulatiomigms in unstructured en-
vironments? J. J. Gibson (1966, 1977) suggests that thpsesentations should be
partitioned intowhat can be done with particular objects awtly an object should
be manipulated in a certain way. The first of these, which @Gikdermsobject affor-
dances, captures the details of what can be done with the object &agient. The
latter captures information about how individual manipiala skills are to be put
together in order to solve a specific task. The task-neuti@ldance representation
is important in that it can provide an agent with a menu ofaadiactivities that are
possible with a given object — whether the current task id Wwebwn or is a new
one. Hence, the affordance representation enables thé tgpatentially bring a
substantial amount of knowledge to new tasks that are to lvedo

One important form of interaction is that of grasping. Forigeg object, how
might an agent come to represent the set of feasible graapmtly be made? Ulti-
mately, one must establish a mapping from perceivable vandhaptic features to
a set of parameterized grasping actions (specific positiodisorientations for the
hand, as well as configurations for the fingers) that are d@ggeio be successful if
executed. We would like for these representations to beetbot an agent’'s own
experiences — either through direct interaction with otgjexr through observation
of other agents’ interactions.

In this chapter, we describe two efforts toward addressirgghallenge. First, we
describe an approach for visually recognizing the 3D oatoh of an object. The
models of object appearance are based entirely on sequehiceage/object pose
pairs as the object is being manipulated. The learning #lgoridentifies robust
descriptions of object appearance from different viewinglas. Second, we intro-
duce a method of identifying descriptions of canonical gsaghat include hand
pose and finger configuration) based on observation of a langeber of exam-
ple grasps made by a human teacher. We employ a clusterifgpchat thishand
posture space that identifies a small number of these canonical graspsr@set-
ing grasp descriptions can then be used by the agent for ipiguiamd execution of
grasping actions and for interpreting the grasping actafrather agents.

2 Learning Models of 3D Object Appearance

One of our ultimate goals is for a robotic agent to learn afforce representations
based on experience gathered by looking at an object as #r@ aganipulates it.
In particular, we would like to construct visual models teatble the agent to rec-
ognize the object and the angle from which it is being vievids interactive ap-
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proach means that although the agent is able to control miatheaonditions in
which this experience is gathered, the learning approadt brirobust to spurious
features in the visual stream, including occlusions by ti®t itself and lighting
effects such as shadows and specular reflections. The rpelie to discover visual
operators that are sensitive to the appearance of the @ltjsoine subset of viewing
angles (oraspects), but that are not “distracted” by these spurious effectsour
approach, individual visual operators recognize the apea of an object for a
subset of viewing aspects. A complete 3D appearance modet object is cap-
tured by identifying a collection of visual operators thater all possible viewing
aspects.

2.1 Edgel Constellations for Describing 2D Object Appearance

Avisual operator in our case recognizes a specific constallaf orientededgel s (Pi-
ater and Grupen, 2000; Coelho, Jr. et al, 2000; Wang, 20@igel&g are edge image
features defined at each pixel, and are described by theimtation in the image and
their magnitude. Piater and Grupen (2002) defimersstellation as a set of edgels
that are arranged in some geometric configuration in the 2iyerspace. This geo-
metric configuration is represented by the relative posidad orientation between
edgels in a constellation. By construction, a constelteisarotation-invariant in the
image plane.

Fig. 1 illustrates two constellations that have been idiectifor two distinct
viewing angles of a cup. The constellation that matchesittee\sew (a) captures
the top rim of the cup. The constellation that matches theoboview (b) captures
edgels on both the top rim and the bottom of the cup. Withinveehionage, a con-
stellation is considered to match if all of the constellatgaigels can be found at the
correct relative position and orientation. The highestrdegf match occurs when
the set of edgels in the constellation align perfectly wighhmagnitude edges in
the query image.

2.2 Capturing Object Appearancein 3D

Although the 2D features are invariant under rotation wattiie image plane, it is
clear from Fig. 1 that the rotations out of this plane can ditically alter the ap-
pearance of an object. We can represent all possible viemspgcts as the set of
points on the unit sphere with the observed object as theec@rig. 2). Imagine a
camera located at some point on thépect sphere, oriented toward the sphere’s ori-
gin. This point therefore constrains two orientation DOEaying free the rotation
about the camera’s axis. The object appearance at a singlegam be described
by one (or a small number of) edgel constellations. For ttse cd the cup, one can
imagine a unique constellation that only matches a set @efsysurrounding the top
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Fig. 1 Constellations matching a side view (a) and a bottom view (b)affa The constellations
have been “painted” on top of the edge magnitude image for eige¥ing direction. Individual
edgels are shown using small circles; the geometric constraint®batedgels are shown as dotted
lines.

Fig. 2 The aspect sphere of a cup with rotation symmetry about

pole of the sphere. As the viewing angle deviates froitine likelihood of observing
the constellation can drop quickly. For a constellatiort teaognizes a “non-polar”
aspect, the set of recognized aspects will fall along a @rdoand on the sphere.
This is because the cup’s appearance does not change véattonstabout the ver-
tical axis As the viewing angle deviates from the center eftiand, it becomes less
likely that the constellation will be observed.

Fig. 3 illustrates the aspects for which the constellatioiisig. 1 are found. The
major axis of the cup in these figures falls along the X axishwhe top of the cup
atX = —1. The constellation that recognizes the side of the cupusdanost often
along the circle for whickX = 0 (a). The constellation that recognizes the bottom of
the cup is found most often aroud= 1, but is occasionally found arouxd= —1
(b). This is the case because this particular constellagongnizes pieces of two
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Fig. 3 Constellation matches for (a) the side constellation (of Fig))l&nd (b) the bottom constel-
lation (Fig. 1(b)). Small dots show aspects that correspond tgénsamples; large dots indicate
where the constellation matches. In this case, the major axigafup is aligned with the X axis.

concentric circles of particular radii, a feature that ismdimes visible from the top
of the cup.

How can we compactly represent the set of viewing angles Fachva constella-
tion is viewable? Specifically, we would like to capture thelihood of the aspect
given that a particular constellatidly has been observegi(a/Obj,C;). Bingham
and Mardia (1978) proposed tiseall circle distribution, which allows us to de-
scribe Gaussian-like distributions on the unit sphere.

*T(HT37V>2
F(t.v)© ’

b(a|T»V7IJ) = (1)
wherea, u are unit vectors angl denotes the mean direction;is a scalar that
gives the concentration of the distribution (the higher théhe more concentrated
the distribution);v is a scalar that determines the shape of the distributiod; an
F(t,v) is a normalizing term. Note that equation 1 obtains a maximale when
uTa=v. This set ofa’s fall at a fixed angle aboyt. By adjusting the parameters
of this distribution, we can describe different shapes oétdrs on our aspect sphere
(Fig. 4).

2.3 Learning Complete 3D Appearance Models

Given a set of image/aspect tuples, the challenge is tois@set of edgel con-
stellations that cover the entire aspect sphere. Our dfgoris outlined in Fig. 5.
During the training process, the algorithm samples a singfestellation at a time
from a specific training image (call this imag®. A two-step filtering process is
used to determine whether the constellatiofotslly robust andglobally discrim-
inative. First, the set of images from aspects surrounding P aretsedrfor the
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Fig. 4 Gaussian-like distributions on the unit sphere, where [0,0,1]. In all cases, the surface
radius is 1+ p/(2 x maxp)), where p is the likelihood at the corresponding aspect. (ajocni
Gaussiant =50, v = 1.2; (b) small circlexr = 100,v = 0.8; and (c) great circler = 100,v = 0.

constellation. If the constellation describes transieatdires such as shadows, then
it is unlikely to match neighboring images. If this is the eathe constellation is
discarded and a new one is sampled. The second filter examiinesages in the
training set for the constellation. If the degree of matchhef constellation distin-
guishes the neighboring images from most of the remainiaigitrg set, then the
constellation is considered to be discriminative. Forgndhie discriminative power
of the constellation is measured using the Kolmogorov-8afirdistance (KSD)
between the neighboring and complete population of imaBestdr and Grupen,
2002). Should the constellation satisfies both filters, therdhm then finds the pa-
rameters of a probability density function that descriliesdet of aspects in which
the constellation is observed. This training process ooes iteratively until the
entire set of generated constellations cover most of theitigiimages.

Given a novel image, we would like to accurately estimate dbpect from
which it is being viewed. More specifically, assuming thatea af constellations
C1,Cy,...,Cy are either observed or not in an image, we would like to findahe
pect,a that maximizesp(a|Obj,Cy, ...,Cn). Making the néve Bayes assumption,
we can estimate this likelihood accordingly:

N
p(aobj,C,...,.Cn) = I_|p(a|0bjaci)' 2
i=

In practice, we make use of a local gradient ascent searthmuttiple starting
locations to identify the maximum likelihocal
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Fig. 5 Overall structure of the aspect recognition algorithm.

2.4 Data Collection and Preprocessing

In our experiments, each element in the data set figpke of image and object
pose. A Polhemus Patriot (Colchester, VT) is attached tmbject so that the 3D
position and orientation of the object can be paired withheiatage. Tuples are
gathered continuously as the object is rotated in front efdamera. In all, a data
set will contain about 2000 such tuples. We employ an imagerpcessing step
that identifies a region of interest (ROI) that ideally cansaonly the object. The
stationary background and skin-colored objects are fitstraated from the image.
The ROI is then selected to encompass a large, contiguousf $le¢ remaining
pixels within the middle of the image frame. In practice, R@I contains the object
in excess of 99% of the images.

Fig. 6 illustrates the recognition process. An independesting image of the
cup is shown in Fig. 6(a) and the corresponding (true) asigesttown on the as-
pect sphere in Fig. 6(b). For this particular image, two telfestions are observed
(Fig. 6(c) and Fig. 6(e)). The density functions correspogdo these two constel-
lations are shown in Fig. 6(d) and Fig. 6(f). The combinedsitgrfunction (Eg. 2)
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Fig. 6 Example aspect recognition. (a) a testing image of the cup, édlytie aspect from which
the object is observed, (c) match of constellation 1 to the tegjérend (d)p(alcup,Cy). (€) match
of constellation 2 to the test image, (fjalcup,Cy), (9) p(ajcup,Ci,Cy), (h) the maximum likeli-
hood aspect, and (i) the nearest training image that correspoitlis aspect.

is shown in Fig. 6(g). The maximum likelihood aspect 810 from the true aspect
(Fig. 6h).

2.5 Experimental Results

Both symmetric (a cup and a block) and asymmetric (a mug apday $ottle) ob-

jects are used in the experiment. For each object, about 20®ple image/aspect
tuples are taken uniformly in order to cover the aspect spaswell as possible. For
each object, we performed 10 independent experiments.débrexperiment, a dif-
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ferent set of 100 samples are randomly selected and resasvbe test data set; the
remaining samples are used as training data. Error is med$ar each test image
as the angle between the estimated and true aspects, doha sgrhmetry of the
object. When there are multiple estimated aspects, the nfeairoois calculated for
a single test image. We report the mean error over 100 imag®4 @ experiments.
We compare the proposed approach with one in which no filjgsiperformed (the
“unfiltered method”) and with a method that guesses aspantfomly.

Both the filtered and unfiltered methods cover 3556 out of 4@86ng images
(of 4 objects, 100 test images and 10 experiments). No céatgtes are found in
the remaining testimages. The aspect estimate error néstoipr the three methods
is shown in Figure 7a. These histograms include errors frrtea experiments
and four objects. The filtered and unfiltered methods deereaponentially with
increasing error. However, the filtered method is biasedentoward lower errors.
The mean error for the random method is substantially highan either of the
other two methods.

The mean errors and standard deviations for each objectharensin Fig. 7b.
For both methods, we can see that the errors for the spralg lao& relatively large
compared to that for the other objects. The reason is thashihpe and texture of
the spray bottle are more complex than the other objects.rAswdt, many constel-
lations often match to a high degree with the texture of thells even though they
are not originally generated from those regions.

We can also see that filtering is a benefit, especially for theencomplicated
objects. For the simple objects, sampled constellationa farticular aspect are of-
ten very similar to each other. Hence, the filtering step dusnake any practical
distinctions between different constellations. As thesolj become more compli-
cated, such as with the spray bottle, a particular aspettgwié rise to a set of
rather different constellations. Hence, the filtering sgepble to make meaningful
distinctions between these constellations.

The performance difference between the filtered and urdiltenethods is signif-
icant for all four objects by a two-tail, paired t-test (blo@ < 0.05; cup:p < 10°3;
mug: p < 10~4; spray bottlep < 10~%). We should also note that the random guess
method does not perform as poorly as one might expect. Thisdause these errors
have also been adjusted according to the symmetric prepestithe objects.

3 Learning Canonical Graspsfor Objects

Once an object has been visually identified and localizegats, how can an agent
describe the set of possible grasping actions that may lem®aBecause the set of
possible actions will ultimately be used for planning anddgploratory learning,
we are motivated to make this set as small as possible so eduoe the complexity
of either search process. One approach to constructinggihissentation is to begin
with a large set of successful example grasps and then tteclirem into a small
set of canonical grasps. This set of examples could be dkbffeen manipulation
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Fig. 7 (a) Histogram of aspect estimate errors made by the three methibadbjéts), and (b)
aspect estimation errors for each method and object.

sequences produced by the agent itself, or by a human adtiectlg on the ma-
nipulated object or acting through the agent via teleopmmaOur focus to date has
been on these two human-driven methods.

We describe each example grasp with the following: 1) pasitf the hand in
an object-centered coordinate frame, 2) orientation ohtinred, and (in some cases)
3) the joint angles of the fingers of the hand. Clustering i$qumed using amix-
ture of probability density functions approach, in which each cluster corresponds
to a canonical hand configuration that describes all threbesfe components (de
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Granville et al., 2006, 2009, and submitted; de Granvil)&. Below, we detall
each of these steps and then show that this method can sudigagentify mean-
ingful clusters from teleoperation experiments performethg NASA's humanoid
robot Robonaut.

3.1 Modeling Hand Orientation

Unit quaternions are a natural representation of 3D orteridbecause they com-
prise a proper metric space, a property that allows us to coenmeasures of simi-
larity between pairs of orientations. Here, an orientatsorepresented as a point on
the surface of a 4D unit hypersphere. This representatiatsis antipodally sym-
metric: pairs of points that fall on opposite poles représied same 3D orientation.
The Dimroth-Watson distribution captures a Gaussian4ikape on the unit hy-
persphere, while explicitly acknowledging this symmetdafdia and Jupp, 1999;
Rancourt et al, 2000). The probability density function fois distribution is as
follows:

F(qlu,K) = F (k) &<a™)" 3)

whereq € R* represents a unit quaterniom,c R* is a unit vector that represents
the “mean” rotationk > 0 is a concentration parameter, &n(k) is a normalization
term. Note thafy"u = cosf, wheref is the angle betweeg andu. Hence, den-
sity is maximal wheng andu are aligned, and decreases exponentially asicos
decreases. Whek = 0, the distribution is uniform across all rotations; lasn-
creases, the distribution concentrates ahoutig. 8(a) shows a 3D visualization
of the Dimroth-Watson distribution, and highlights its Gaian-like characteristics.
The high density peaks corresponditand—u.

A second cluster type of interest corresponds to the casédichwan object ex-
hibits a rotational symmetry. For example, an object such aglinder can be ap-
proached from any orientation in which the palm of the hanghigllel to the planar
face of the cylinder. In this case, hand orientation is a@nséd in two dimensions,
but the third is unconstrained. This set of hand orientaticorresponds to an arbi-
trary rotation about a fixed axis, and is described by a grieeleqor girdle) on the
4D hypersphere. We model this set using a generalizatioheoDimroth-Watson
distribution that was suggested by Rivest (2001). The gitibadensity function
is as follows:

Flalupuz.k) = F (k) &L (@) ] @)

whereu; elR“ andu, € R* are orthogonal unit vectors that determine the great
circle, andF (k) is the corresponding normalization term. Fig. 8(b) illasés the
girdle distribution on the 3D unit sphere. First, note thitp@ints on the great
circle are assigned maximal density. This correspondsaaéh of points for which
(un1)2+ (g7 u2)2 = 1. However, as the angle betwegmnd the closest point on

the circle increases, the density decreases exponentially



12 Authors Suppressed Due to Excessive Length

Fig.8 Three dimensional representations of the Dimroth-Watson (agjiadie (b) distributions on
S2. In both cases, the surface radius+4sf, wherep is the probability density at the corresponding
orientation

For a given set of observations, the parameters of the Di\ddtson and girdle
distributions are estimated using maximum likelihoodrestion (MLE). The axes
of the distribution are derived from the sample covarianegrix, A € R4

N ga
A= 2L )

whereq; is the orientation of théth sample, and\ is the total number of samples.
The MLE of u is parallel to the first eigenvector af (Mardia and Jupp, 1999;
Rancourt et al, 2000). The orthogonal vectorsandu, span the same space as the
first and second eigenvectorsAf(Rivest, 2001).

For the Dimroth-Watson distribution, the MLE of the conaatibn parametek,
uniquely satisfies the following (see de Granville (2008)tfee derivation):

/ N (qTy)2
e(k)EFF ((:)) :_z.zl(h?. u)°” ©)

In the case of the girdle distribution, the MLE lofiniquely satisfies:

- I G R G
Fllg N : ()
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For computational efficiency, we approximaie?() andé‘l() when solving foik.
This approximation is discussed in detail by de Granvillg0).

3.2 Modeling Hand Position

The position of the hand is represented as a 3D vector in §lartepace. We choose
to model position using a Gaussian distribution:

1 LT -1y
P(X|U,Z) = ——5—e 20 Z Tl (8)

(2m® 5|}

Here,x € RY denotes a point in d dimensional Cartesian space, whjlec RY
andZ € R4 correspond to the mean vector and covariance matrix of thes€an
distribution. For our purposes, = 3, i describes the mean position of the hand,
andZX captures covariance in hand position.

3.3 Modeling Finger Posture

Humanoid robots such as Robonaut typically have many degfdfeeedom (DOF)
available to perform manipulation tasks. For example, edétobonaut’s hands has
12 DOF: three for the thumb, index, and middle fingers; oneferring and pinkie
fingers; and one for the palm (Ambrose et al, 2000). Incofragafinger config-
urations into our clustering algorithm is a key step to cargtng more complete
grasp affordance representations. One possible approahfstproblem is to learn
clusters using the full dimensionality of the robot's erftbetor. However, hands
with a large number of joints can be difficult to model becaaséncreasingly large
number of training examples is needed to adequately samgpp@@e as more and
more dimensions are added to it.

One question is whether or not all of the available DOFs ohidued are even nec-
essary to accurately model the finger configurations usegrémping. For example,
when executing a power grasp, the fingers tend to flex in uniSbis means that
there is a strong correlation between the distal and proimirets of each finger, as
well as a correlation across fingers. Santello et al (1998)Gincarlie et al (2007)
present an approach that takes advantage of such cornaldtimugh the notion of
aneigengrasp. The eigengrasps of a hand comprise a set of basis vectdrs joiht
space of the hand. Linear combinations of a small numbeetbigengrasps can be
used to approximate the finger configurations used when igigasp

More formally, letp € RY be a column vector of joint angles describing the finger
configuration of a robot’s end-effector, axde R9*9 constitute a basis for the vector
space of whiclp is a member. The columns &f represent directions in the joint
space of the hand (the eigengrasps), and are ordered fram tinat capture the most
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variance in finger configuration to the smallest (i.e., frdma largest corresponding
eigenvalue to the smallest). Linear combinations of thamols ofV can be used to
represent any possible pose for the fingers of the robot’d:han

d
p= _zlaiVi =Va 9)

Here,v; € RY is thei'th column ofV, a € RY is a column vector of coefficients, and
a; € R is element of the vectora.

Because there may be a large number of joints in the robatid fthe configura-
tion of the fingers may be approximated by using a small nuriioeof eigengrasps:

K
p=3 avi=Va, (10)
4

whereV = [Vivz..v],anda=[a; a ... aK}T. Given a finger configuratiop
and a subset of the eigengrasps low dimensional representationpfs obtained
by solving the system of linear equations in 10 &or

We compute the set of eigengrasps using samples of the jogh¢ aector as a
teleoperator grasps a set of objects. Pet R9*N be the set of finger configurations
resulting from the human demonstration, whisrdenotes the number of examples.
The eigengrasps are determined by computing the eigemgeat®’s covariance
matrix (Hand et al, 2001).

3.4 Modeling Mixtures of Hand Postures

We model a grasp using a joint distribution defined over hamgkepand the finger
posture. Specifically:

9(x..818) = p(x|8p) f (c6) p(al6h)., (11)
and _ _
6(x,0,8/8) = p(x16p) T (a/67) p(al6h). (12)

Here,p(&6y,) is a multivariate Gaussian distribution otedimensions. We assume
that hand position, hand orientation, and finger configaraéire conditionally in-
dependent given a cluster.

An individual hand posture distribution can capture a sngluster of points,
but a set of grasps is typically fit best by multiple clusténstthermore, the use of
multiple clusters captures any covariance that may existédxn the position and
orientation of the hand when grasping a particular objec.tiérefore employ a
mixture model-based approach. Here, the density functfahe mixture,h(), is
defined as:
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M
h(x,ql%) = wjcj(x,9|6;), (13)
=1
W= (W]_,...,WM,QJ_,...,GM), (14)
and
M
ZW] =1 (15)
=1

whereM denotes the number of component densities Gaistbne of the two density
functions describing hand posg(( or g()). Each element of the mixture represents
a single cluster of points, and is weighted Wy Estimation of the parameters of
the individual clusters and the cluster weight variableadsomplished using the
Expectation Maximization (EM) algorithm (Dempster et @77%).

For a given set of observations, it is unclegpriori how many or of what type
of cluster is appropriate. Our approach is to construct afisible mixtures that
have a maximum oM clusters (we choos®l = 10) and to choose the mixture
that best matches the observations. For this purpose, we osakof the Integrated
Completed Likelihood (ICL) criterion (Biernacki et al, 200to evaluate and order
the different mixture models. Like the Bayesian Informati@riterion, ICL prefers
models that explain the training data, but punishes morept®mmodels. In ad-
dition, ICL punishes models in which clusters overlap onether. These features
help to select models that describe a large number of gragpswmall number of
clusters.

Because the EM algorithm is a gradient ascent method in BEhdad space con-
taining many local maxima, each candidate mixture modelfivastotal of Q dif-
ferent times using the available training data (for our jpsgs Q = 80). For a given
mixture, this ensures that a variety of different initialiions for the EM algorithm
are explored. The model that performs best on the first viatidaset according to
ICL is subsequently evaluated and compared with other méstusing the second
validation set (again using ICL).

Due to our data collection procedure, some samples do nasgmrnd to quality
grasps, and instead correspond to transitions betweepgiass desirable that our
clustering algorithm be robust to this form of noise. Howewhen a large enough
number of mixture components is allowed, the EM algorithndteto allocate one
or more clusters to this small number of “outlier” samples @plicitly discard
these mixture models when an individual cluster covers & genall percentage
of the samples (indicated by a small magnitude cluster vigighameterw;). In
particular, a model is discarded when:

mavg (w;)
miny(wy) = e

whereA is a threshold. For our experiments, we choase 5 because it tends to
result in the selection of high quality, compact models. I@&f inodels that have not
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been removed by this filter step, the one with the best ICL omeasn the second
validation set is considered to be the best explanationeobbiserved data set.

3.5 Data Collection

The human teleoperator is able to control Robonaut's magyeds of freedom with
a virtual reality-like helmet and a data glove equipped witholhemus sensor (Am-
brose et al, 2000). In addition to articulating Robonauésky the helmet provides
visual feedback from the environment to the teleoperatoe 8rms and hands of the
robot are commanded by tracking the movements of the humaists and fingers,
and performing a mapping from human motion to robot motion.

Each trial consists of the human teacher haptically expipen object for ap-
proximately 15 minutes. The object is located in a fixed pesative to the robot.
To maximize the number of quality samples collected, differgrasping strategies
may be employed by the teleoperator based on the local gepofdhe object. For
example, when grasping larger surfaces, a sliding moti@omunction with a fixed
finger configuration is used. This ensures that the feasidd#@ipns and orientations
of the hand are collected in a timely manner. In contrastt¢heoperator repeat-
edly opens and closes the robot’s hand when grasping snrédces. This strategy
forces hand pose to vary even though the hand may not be ableléoalong the
local surface.

When compared with the data collected during direct obsenvaif a human
performing grasping actions (de Granville, 2008; de Gritenand Fagg, submit-
ted), the robot teleoperation experience tends to contaget amounts of noise.
Robonaut’'s arm motions are slower and less fluid under huroatia. Hence, the
hand posture samples contain a large number of cases in wWadhmand is not in
contact with the object. To alleviate this problem the titioiss are removed manu-
ally by identifying the time intervals in which they occur.

3.6 Experimental Results

To demonstrate the effects of incorporating finger configareinto the grasp learn-
ing process, a number of experiments are performed. Fhsteigengrasps are
learned based on experience that is generated by the huieapdeator. A num-
ber of different objects are used to ensure a reasonablelisgnob the finger con-
figurations. Due to invalid sensor data, seven of the fingetgaare ignored. This
means that the number of effective degrees of freedom in Ranlits hand has been
reduced from twelve to five. Of these remaining five degreefsegfdom, approxi-
mately 98% of the variance can be explained by the first thrieeipal components.
This, in conjunction with the ability to visualize the resnd) low dimensional rep-
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Fig. 9 The set of objects used in the Robonaut clustering experimehtdatarail; (b) Hammer.

resentation of finger configuration, led to the use of onlyfits three eigengrasps
(i.e.,K=23).

3.6.1 Handrail

Figs. 10(a,c,e) show the training examples for the handigéct. Panel (a) shows
the 3D position of the hand throughout the course of the exyat, while panel
(b) provides a visualization of the corresponding handrdagons. Orientation of
the hand is represented as a single point on the surface ahihephere: imagine
that the object is located at the origin of the sphere; thatpm the surface of the
sphere corresponds to the intersection of the palm with piverg. Note that this
visualization technique aliases the set of rotations abimiiine perpendicular to
the palm. In both panels (a) and (c), the major axis of the taid located along
the X axis, with the grasped end At= —60 in the position space and ¥t= —1
in the orientation space. Finally, panel (c) shows the fimgafigurations projected
into the eigengrasp space.

A total of five clusters were learned for the handrail objéeb that correspond
to an overhand reach in which the handrail is approached ftwmtop, two for
the underhand configuration, and one for the side approdod.|8arned position
clusters are shown in Fig. 10(b) as first standard deviatilipseids of the Gaus-
sian distribution. The orientation component of thesetelssis represented using a
Dimroth-Watson distribution and is show in panel (d). Theamerientation is indi-
cated using the line segment emanating from the center afpthere. Clusters 1 and
4 correspond to the top approach and show an elongation posigon component
along theX axis. This elongation encodes the fact that the top approestiits in
grasps at many points along the length of the handrail. Ligewclusters 2 and 5
correspond to the underhand approach (with the palm up) endlso elongated
along the handrail. Cluster 3 corresponds to the side apprtmathe handrail. The
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Fig. 10 The training examples and learned affordance model for thdradn(a) The position of

the hand; (b) The position component of the learned affordamoeel; (c) The orientation of the
hand; (d) The orientation component of the learned affordamadel; (e) The finger configuration
of the hand; (f) The finger configuration component of the ledraffordance model.
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demonstrated variation in hand position was very small,iamdflected in the size
of the ellipsoid.

Panel (f) shows the learned eigengrasp clusters. Eachraafrtiee bounding box
provides a visualization of the mapping that occurs betwtberlow dimensional
representation of finger configuration and each joint of ti®t’'s hand. Notice that
variation along the first eigengrasp corresponds to flexioith® index and middle
fingers, while variation along the second eigengrasp caadésction and abduc-
tion of the thumb. However, variation along the third eigexsgp does not affect the
configuration of the fingers significantly, only affectingtfiexion of the most dis-
tal joints of the index and middle fingers. Also, note thatring and pinkie fingers
remain in their extended configurations. (these are amoagldgrees of freedom
for which no data were recorded).

Turning to the learned eigengrasp clusters, notice thagliiEsoids 1 and 2 are
in the same region of the finger configuration space even thtlgy correspond
to grasp approaches from above and below the handrail. Bedhe same sliding
technique was employed by the teleoperator when demoinsfridtese grasps, the
hand had a similar shape for each approach. However, fotecl@sthere is more
variation in finger configuration, which is indicated by tHereyation of ellipsoid
2. In contrast, the hand was continually opened and closeah\ile side approach
was used to grasp the handrail. This is evident by compahiadaind shapes that
correspond to points on opposite ends of ellipsoid 3's majas. On the right end
of the figure, the hand is in an open configuration, but on tfiefel the middle and
index fingers are flexed considerably. Also, notice thapstlid 3 is separated from
the other eigengrasp clusters, which highlights the difiehand shapes used when
grasping the handrail from above and below versus from tthe. si

3.6.2 Hammer

The example grasps demonstrated by the human teleoperatohe learned grasp
affordance model for the hammer are shown in Fig. 11. In thisecfive clusters
were learned: cluster 1 represents grasps when approafrbimgabove the ham-
mer’s head. The orientation of this cluster is represengialgua girdle distribution,
as indicated by the circle on the surface of the sphere inlgedhdn our visualiza-
tion, the points along the circle correspond to the origoitat of maximum density.
For the case of cluster 1, we would have expected the use ofraol}i-Watson
distribution because there is little variation about thénfcorresponding to the
top approach. However, what variation there is falls alomgaow arc that is best
captured by the girdle.

The remaining clusters (2-5) capture grasps along the baofdthe hammer
when approaching from the side. Girdle distributions weskected to model the
orientation of the hand for the side approach. While this isoemnaging, the algo-
rithm learned four clusters instead of one. This is mostlyildue to the spatially
distinct hand positions used to grasp the hammer’s handle.
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Fig. 11 The training examples and learned affordance model for the han@d he position of
the hand; (b) The position component of the learned affordamndel; (c) The orientation of the
hand; (d) The orientation component of the learned affordamadel; (e) The finger configuration
of the hand; (f) The finger configuration component of the ledraffordance model.
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The finger configurations used by the teleoperator to graspammer’s handle
were very different than those used to grasp the hammert. Wghen approaching
the object from the side, power grasps that maximized théactsurface area be-
tween the hand and the handle were more likely to be used.eZsely, precision
grasps that mainly used the finger tips were employed whespgra the head of
the hammer. These differences in hand shape can be seen itilkig Ellipsoid 1
represents the finger configurations used to grasp the hafroneabove. The large
volume of the ellipsoid is due to the exploration strategykayed by the teleopera-
tor: the hand was continually opened and closed on thisgodti the object. Hence,
there was a large variance in finger configuration. Also,agothat ellipsoids 2-5
are spatially distinct from eigengrasp cluster 1.

4 Discussion

In this chapter, we presented several steps toward robatitepof affordance rep-
resentations in support of grasping activities. Affordesprovide a means of map-
ping sensory information, including vision, into a small eegrasping actions that
are possible with the object being viewed. Key to this regnéation is the fact that
it captures the specific interaction between the object aedagent. The ability
to learn these representations automatically will be irtgrdras we begin to field
robots in unstructured environments and expect them tampark wide range of
manipulation tasks.

Given a sequence of tuples consisting of an image and antgigse, our algo-
rithm learns 3D appearance models for objects. In partictiia algorithm identifies
visual operators that are robust to spurious image featiwrels as object occlusions
and shadows. Visual operators are implemented as edgeaktlatisens that describe
a specific geometrical relationship between a set of smgkgdrhe 3D appearance
of an object is captured by compactly describing the set eivirig angles from
which each image feature is viewable. When a novel image septed, the set of
observed features can then be used to estimate the mogt\ikeling angle of the
object. Ultimately, we will estimate the complete pose @& dibject, which, in turn,
can be used for planning and executing grasping actions.

In more recent work, we have begun to make use of scale-anvifieature trans-
form (SIFT) image features in place of edgels (Lowe, 2004)s method is showing
promise in addressing image scale issues, improving theuatational efficiency
of identifying features, and increasing the accuracy ofvileeving angle estimates.
One of the challenges in using such an approach is that ofrgyuihe set of primi-
tive features that arise from such a large database of inthgesxhibit very similar
appearance. In addition, we are now making use of a pafieted approach for
describing the density functions. This approach is helpingddress the overfitting
issues that can arise with mixture-type models and allow® wspture irregular
shapes in the density functions.
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The second component of our algorithm uses tuples of obge pnd hand pos-
ture to construct a small menu of grasps that are possible thé object. These
compact representations are constructed from many exagn@éps made by clus-
tering the hand posture examples. This property enablasstnef the affordance as
a way to access “primitives” in higher-level activitiescinding planning, learning,
and the recognition of motor actions by other agents (Fagd, @004; Brock et al,
2005). In particular, the hand posture clusters that haes bearned map directly
onto resolved-rate controllers that can bring a robot haral $pecific position and
orientation relative to the object. Note that this conttelpsassumes that haptic ex-
ploration methods are available to refine the grasps onchahd has approached
the object (Coelho and Grupen 1997; Platt et al., 2002, 2BG8t 2006; Wang et
al., 2007).

Our approach to date has assumed an intermediate représebitween vision
and grasp that is rooted in the individual objects. Howewer,would ultimately
like for this representation to be able to generalize acotscts. This step will be
important as the robotic agent is faced with objects withalulii has little to no prior
experience. Our approach is to identify canonical grasgisrtiutinely co-occur with
particular visual features. When two or more objects havepmmants that share a
common shape, and hence common visual features, it is likaly similar hand
postures will be used to grasp these components.

The affordance representation captures the syntax of igigéie., what grasps
are possible for a given object), and does not take into atciie semantics of
grasping (how an object is to be used in the larger contexttagk). This distinc-
tion, which is drawn by Gibson, is a critical one for a leaghegent. When a new
task is presented, the syntax of interacting with a specifjeai can be readily ac-
cessed and used. The learning agent is then left with thégumotf selecting from a
small menu of possible grasping actions to solve the new fsk abstraction can
have important implications for the agent quickly learniagperform in these novel
situations.
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