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Abstract When presented with an object to be ma-
nipulated, a robot must identify the available forms of

interaction. How might an agent acquire this mapping

from object representation to action? In this paper, we
describe an approach that learns a mapping from ob-

jects to grasps from human demonstration. For a given

object, the teacher demonstrates a set of feasible grasps.
We cluster these grasps in terms of the position and ori-

entation of the hand relative to the object. Individual

clusters in this pose space are represented using prob-

ability density functions, and thus correspond to varia-
tions around canonical grasp approaches. Multiple clus-

ters are captured through a mixture distribution-based

representation. Experimental results demonstrate the
feasibility of extracting a compact set of canonical grasps

from the human demonstration. Each of these canonical

grasps can then be used to parameterize a reach con-
troller that brings the robot hand into a specific spatial

relationship with the object.

Keywords Grasp affordance · learning from demon-

stration · clustering · mixture models · probabilistic
densities of 3D rotations

1 Introduction

Gibson (1966, 1977) proposed that objects in the envi-
ronment can be represented by an agent in terms of the

actions that can be performed with those objects. This
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affordance representation captures a combination of the
interaction-relevant physical properties of the object

and the capabilities of the agent’s own body. Further-

more, Gibson suggested that this representation should
be distinct from one that explicitly captures the seman-

tics of the objects. Instead, an affordance representa-

tion should provide a detailed, task-neutral “menu” of
possible actions that can be taken by the agent. Thus,

this knowledge of agent-object interaction is available

whether the task is well known to the agent or one that

the agent is just learning to perform.

One important form of interaction is that of grasp-

ing. For a given object, how might an agent come to
represent the set of feasible grasps that may be made?

Ultimately, one must establish a mapping from perceiv-

able features to a set of parameterized grasping actions

(specific positions and orientations for the hand, as well
as configurations for the fingers) that are expected to be

successful if executed. We would like for this set to be

small so as to facilitate both planning and exploratory
learning.

One approach is to establish a direct mapping be-

tween the perceived features of objects and the grasps
available to the agent. Coelho, Piater, and Grupen de-

veloped an approach that automatically learns a direct

mapping from constellations of visual features to hand
orientations and finger configurations in a planar grasp-

ing task (Coelho et al. 2000; Piater and Grupen 2002).

Given a set of object images and corresponding quality
grasp configurations, the visual learning algorithm at-

tempts to find sets of geometrically-arranged image fea-

tures that consistently predict the relative orientation

of the hand and the associated finger configurations. In
novel situations these affordance maps can then be used

to position and configure the hand in such a way that

a successful grasp is probable.
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Similarly, Sweeney and Grupen (2007) present an

approach that learns a collection of shared grasp af-
fordances for a set of objects. Each affordance is rep-

resented as a joint probability distribution over coarse

visual features, hand position, and hand orientation.
Successful examples of grasps are demonstrated by a

human teleoperator. When the visual features exhib-

ited by a novel object are similar to those in the training
set, the learned affordance map can be used to derive

actions that are likely to result in a successful grasp.

One challenge that arises out of taking a direct ap-

proach to learning grasp affordances is that the appear-

ance of an object may change as a function of its pose
even though the set of grasps that may be made rela-

tive to the object does not. One possible solution to this

problem is to establish an indirect mapping from sen-
sory features to grasps through an intermediate object-

centered representation. This approach separates the

problem into one of first estimating an object’s pose
and identity (and/or shape), and then estimating the

set of feasible configurations of the hand relative to the

object.

Stoytchev (2005) presents a developmental approach

to the latter of these two problems. This approach dis-
covers sequences of actions that result in a successful

“binding” of the object with the robot (i.e., a grasp).

For each of several objects, the robot performs a ran-
dom sequence of exploratory actions. Subsequences of

actions that lead to simultaneous movement of the ob-

ject and a component of the robot are deemed as “in-

teresting.” Short subsequences that reliably achieve this
interesting bound configuration are identified as viable

grasping actions, and are associated with the object

through the affordance map. Hence, when a known ob-
ject is subsequently presented to the robot, it is able to

generate a sequence of actions that will likely lead to a

successful grasp.

De Granville et al (2006) present a technique for
learning the canonical hand orientations that can be

used to grasp specific objects. Given a set of demon-

strated grasps by a human teacher, a small number

of canonical hand approach orientations are identified
through a clustering process on S3 (the 4D unit hy-

persphere). Assuming a similarity in the morphology

between the human teacher and the robot, the learned
clusters represent a set of hand approach orientations

that can lead to feasible grasps.

In contrast to making use of object identity, Bekey

et al (1993) and Miller et al (2003) rely on a shape-

based description of an object. Objects are modeled as
a collection of shape primitives such as cylinders, rect-

angular prisms, and cones. Each primitive is associated

with a set of relative hand poses and corresponding fin-

ger configurations. Given a set of primitive shapes that

describe a novel object, the planner can quickly gen-
erate a set of candidate grasps. In Miller’s case, each

candidate grasp is executed in simulation, and evalu-

ated in terms of the amount of force required to dis-
lodge the object from the hand. In the case of Bekey

et al., the set of candidates is evaluated as a function

of the semantics of the grasp and task. For example,
when using a wrench to turn a nut, grasps that provide

a large amount of torque are preferable.

In this paper, we extend the approach of de Granville

et al by constructing a more complete grasp affordance

representation. In particular, we focus on the problem

of describing the position and orientation of the hand as
it approaches the object. Individual clusters are repre-

sented by a joint probability distribution over position

and orientation. In our experiments, a single demon-
stration trial consists of a human teacher haptically

exploring an object, pausing briefly in configurations

that correspond to quality grasps. Experimental results
demonstrate the feasibility of extracting a compact set

of canonical grasps from the human demonstration. The

learned representation can then be used to parameter-

ize controllers that are capable of driving a hand to an
appropriate pose for grasping, or to interpret the ac-

tions of other agents in the environment.

2 Representing Grasp Affordances

Having a compact representation that describes the ways

in which an object may be grasped greatly improves
an agent’s ability to efficiently plan and execute grasp-

ing actions. Our goal is to compress a large number

of examples provided by a human teacher into a small

number of clusters that are meaningful in terms of de-
scribing the functionally different ways that an object

may be grasped. Our approach represents each of these

clusters as a probability density function (PDF) defined
over both orientation and position. A set of clusters is

then captured using a mixture model approach.

2.1 Modeling Hand Orientation

Unit quaternions are a natural representation of 3D ori-

entation because they comprise a proper metric space, a
property that allows us to compute measures of similar-

ity between pairs of orientations. Here, an orientation

is represented as a point on the surface of a 4D unit hy-

persphere. This representation is also antipodally sym-
metric: pairs of points that fall on opposite poles rep-

resent the same 3D orientation. The Dimroth-Watson

distribution captures a Gaussian-like shape on the unit
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hypersphere, while explicitly acknowledging this sym-

metry (Mardia and Jupp 1999; Rancourt et al 2000).
The probability density function for this distribution is

as follows:

f (q|u, k) = F (k) ek(qT u)
2

, (1)

where q ∈ R
4 represents a unit quaternion, u ∈ R

4 is a

unit vector that represents the “mean” rotation, k ≥ 0
is a concentration parameter, and F (k) is a normal-

ization term that is given in the appendix. Note that

qT u = cos θ, where θ is the angle between q and u.
Hence, density is maximal when q and u are aligned,

and decreases exponentially as cos θ decreases. When

k = 0, the distribution is uniform across all rotations;
as k increases, the distribution concentrates about u.

Figure 1(a) shows a 3D visualization of the Dimroth-

Watson distribution, and highlights its Gaussian-like

characteristics. The high density peaks correspond to
u and −u.

A second cluster type of interest corresponds to the

case in which an object exhibits a rotational symmetry.
For example, an object such as a cylinder can be ap-

proached from any orientation in which the palm of the

hand is parallel to the planar face of the cylinder. In
this case, hand orientation is constrained in two dimen-

sions, but the third is unconstrained. This set of hand

orientations corresponds to an arbitrary rotation about
a fixed axis, and is described by a great circle (or gir-

dle) on the 4D hypersphere. We model this set using a

generalization of the Dimroth-Watson distribution that

was suggested by Rivest (2001). The probability density
function is as follows:

f̄ (q|u1,u2, k) = F̄ (k) e
k

h

(qT u1)
2

+(qT u2)
2

i

, (2)

where u1 ∈ R
4 and u2 ∈ R

4 are orthogonal unit vectors

that determine the great circle, and F̄ (k) is the cor-
responding normalization term that is derived in the

appendix. Figure 1(b) illustrates the girdle distribu-

tion on S2 (the 3D unit sphere). First, note that all

points on the great circle are assigned maximal den-
sity. This corresponds to the set of points for which
(

qT u1

)2
+

(

qT u2

)2
= 1. However, as the angle be-

tween q and the closest point on the circle increases,
the density decreases exponentially.

For a given set of observations, the parameters of the

Dimroth-Watson and girdle distributions are estimated
using maximum likelihood estimation (MLE). The axes

of the distribution are derived from the sample covari-

ance matrix, Λ ∈ R
4×4:

Λ =

∑N

i=1 qiq
T
i

N
, (3)

(a)

(b)

Fig. 1 Three dimensional representations of the Dimroth-
Watson (a) and girdle (b) distributions on S2. In both cases,

the surface radius is 1 + p, where p is the probability density at
the corresponding orientation

where qi is the orientation of the ith sample, and N is

the total number of samples. The MLE of u is parallel

to the first eigenvector of Λ (Mardia and Jupp 1999;

Rancourt et al 2000). The orthogonal vectors u1 and u2

span the same space as the first and second eigenvectors

of Λ (Rivest 2001).

For the Dimroth-Watson distribution, the MLE of
the concentration parameter, k , uniquely satisfies the

following (see de Granville (2008) for the derivation):

G (k) ≡
F ′ (k)

F (k)
= −

∑N

i=1

(

qT
i u

)2

N
. (4)

In the case of the girdle distribution, the MLE of k

uniquely satisfies (see de Granville (2008) for the deriva-
tion):

Ḡ (k) ≡
F̄ ′ (k)

F̄ (k)
= −

∑N

i=1

[

(

qT
i u1

)2
+

(

qT
i u2

)2
]

N
. (5)
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For computational efficiency, we approximate G−1() and

Ḡ−1() when solving for k (see the appendix for details).

2.2 Modeling Hand Position

The position of the hand is represented as a 3D vector

in Cartesian space. We choose to model position using

a Gaussian distribution:

p (x|µ,Σ) =
1

(2π)
d

2 |Σ|
1

2

e−
1

2
(x−µ)T Σ−1(x−µ) (6)

Here, x ∈ R
d denotes a point in a d dimensional Carte-

sian space, while µ ∈ R
d and Σ ∈ R

d×d correspond to

the mean vector and covariance matrix of the Gaussian

distribution. For our purposes, d = 3, µ describes the
mean position of the hand, and Σ captures covariance

in hand position.

2.3 Modeling Hand Pose

Hand pose is represented as a joint probability distribu-

tion over position and orientation. We assume that the
position and orientation of the hand are independent

within a single cluster. Since there are two choices for

the orientation component (Dimroth-Watson and gir-
dle), the joint distribution takes on one of the following

forms:

g (x,q|θ) = p (x|θp) f (q|θf ) (7)

and

ḡ
(

x,q|θ̄
)

= p (x|θp) f̄
(

q|θf̄

)

, (8)

where θ and θ̄ are the parameters for the two joint dis-

tributions, θp consists of the parameters for the position

density, and θf and θf̄ are the parameters of a Dimroth-
Watson and girdle distributions, respectively.

The g () and ḡ () density functions essentially en-

code two different grasp types. The first constrains all
six degrees of freedom of hand pose, while the second

constrains all but one rotational degree of freedom.

2.4 Mixtures of Hand Pose Models

An individual hand pose distribution can capture a sin-

gle cluster of points, but a set of grasps is typically
fit best by multiple clusters. Furthermore, the use of

multiple clusters captures any covariance that may ex-

ist between the position and orientation of the hand

when grasping a particular object. We therefore em-

ploy a mixture model-based approach. Here, the density
function of the mixture, h (), is defined as:

h(x,q|Ψ) =
M
∑

j=1

wjcj(x,q|θj), (9)

Ψ = (w1, ..., wM , θ1, ..., θM ), (10)

and

M
∑

j=1

wj = 1, (11)

where M denotes the number of component densities,
and cj is one of the two density functions describing

hand pose (g () or ḡ ()). Each element of the mixture

represents a single cluster of points, and is weighted
by wj . Estimation of the parameters of the individual

clusters and the cluster weight variables is accomplished

using the Expectation Maximization algorithm (Demp-
ster et al 1977).

3 Learning Grasp Affordances

The previous section presented an approach for repre-

senting the grasp affordances of an object by a mixture
of parametric distributions over the position and ori-

entation of the hand. This section focuses on the ex-

perimental procedures and algorithms employed in this
work to learn grasp affordances from human demon-

stration.

3.1 Data Collection Procedure

A human teacher wears a P5 glove (Essential Reality,
Inc.) equipped with a Polhemus Patriot sensor near

the wrist (Polhemus, Inc.).1 These components contin-

uously capture the pose of the hand at 15Hz. A fixed
transformation relative to the wrist is used to estimate

the point between the tips of the thumb and index fin-

ger. Because the human teacher primarily uses precision
grasps, this point is used as a description of hand pose.

In addition, a Polhemus sensor is mounted on the ob-

ject, which allows us to compute the pose of the hand

in an object centered coordinate frame. Each trial con-
sists of approximately 5 minutes of haptic exploration of

the object. Throughout the course of a trial, the object

may be translated and rotated in the global coordinate
frame. This allows the human teacher to execute grasps

that might not be possible if the object were in a fixed

1 The experimental protocol was approved by the University
of Oklahoma Internal Review Board (IRB #11909).
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location of the workspace. During the trial, the teacher

largely maintains contact with the object in configura-
tions that correspond to quality grasps, although some

samples fall along transitions between valid grasps. Af-

ter the trial, the observations are subsampled and split
into a training set and two validation sets. A training

set consists of 1000 samples, each validation set contains

250 samples, and a total of 10 trials are performed for
each object.

3.2 Model Selection

For a given set of observations, it is unclear a priori how

many or of what type of cluster is appropriate. Our ap-

proach is to construct all possible mixtures that have
a maximum of M clusters (we choose M = 10) and to

choose the mixture that best matches the observations.

For this purpose, we make use of the Integrated Com-

pleted Likelihood (ICL) criterion (Biernacki et al 2000)
to evaluate and order the different mixture models. Like

the Bayesian Information Criterion, ICL prefers mod-

els that explain the training data, but punishes more
complex models. In addition, ICL punishes models in

which clusters overlap one-another. These features help

to select models that describe a large number of grasps
with a small number of clusters.

Because the EM algorithm is a gradient ascent method

in a likelihood space containing many local maxima,

each candidate mixture model was fit a total of Ω dif-
ferent times using the available training data (for our

purposes, Ω = 80). For a given mixture, this ensures

that a variety of different initializations for the EM al-
gorithm are explored. The model that performs best on

the first validation set according to ICL is subsequently

evaluated and compared with other mixtures using the
second validation set (again using ICL).

Due to our data collection procedure, some samples

do not correspond to quality grasps, and instead cor-

respond to transitions between grasps. It is desirable
that our clustering algorithm be robust to this form of

noise. However, when a large enough number of mix-

ture components is allowed, the EM algorithm tends to
allocate one or more clusters to this small number of

“outlier” samples. We explicitly discard these mixture

models when an individual cluster covers a very small
percentage of the samples (indicated by a small mag-

nitude cluster weight parameter, wj). In particular, a

model is discarded when:

maxj(wj)

minj(wj)
≥ λ, (12)

where λ is a threshold. For our experiments, we chose

λ = 5 because it tends to result in the selection of high

quality, compact models. Of the models that have not

been removed by this filter step, the one with the best
ICL measure on the second validation set is considered

to be the best explanation of the observed data set.

3.3 Assessing Model Quality

In general, it is difficult to assess the performance of

unsupervised learning techniques because there is no
inherent notion of a ground truth. Thus, to assess the

quality of a model that is produced by our clustering

algorithm, we compare the learned clusters to a set of
heuristically chosen clusters. Our heuristic is based on

knowledge of the object and the types of grasps demon-

strated by the human teacher. For example, when grasp-

ing the handle of an object, such as the heat gun shown
in figure 2(d), a single grasp type is usually employed.

The orientation of the hand relative to the object is

typically fixed in a configuration orthogonal to the han-
dle’s major axis, and the hand position tends to cluster

around the handle’s center. This approach provides a

reasonable estimate of the number of clusters that ex-
ist for an object, as well as an expectation for each

cluster’s shape or type.

Performance of the clustering algorithm is quanti-

fied in terms of a contingency table that counts the

number of “true” positives (TP), “false” positives (FP),
and “false” negatives (FN) present in a solution pro-

duced by our clustering algorithm. A true positive is

scored when the algorithm identifies a cluster that cor-
responds to a heuristically derived cluster. A match oc-

curs when the position component of a cluster covers

the appropriate region of an object, and the orientation

component captures the set of hand orientations used
by the human teacher (i.e. whether or not a rotational

symmetry exists). A false positive is scored when the

algorithm identifies a cluster that does not match the
heuristic. This can happen when the algorithm identi-

fies multiple clusters where a single cluster should have

been found. A false negative is scored when the algo-
rithm fails to identify one of the heuristically chosen

clusters.

Once a contingency table has been constructed for

a grasp affordance model its true positive rate (TPR =

TP/(TP + FN)), precision (PRC = TP/(TP + FP )),
and false discovery rate (FDR = FP/(TP + FP )) are

computed. The true positive rate reports the fraction

of the desired clusters that were correctly identified,

while the precision describes the fraction of correctly
identified clusters out of the clusters actually learned

by the algorithm. The false discovery rate is a measure

of how much our algorithm is overfitting the data.
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4 Experimental Results

In order to illustrate the capabilities of our clustering
approach, we perform multiple grasping experiments

using a variety of objects (see Figure 2). Each object

has its own unique set of grasps that may be modeled

as a mixture of joint distributions over the position and
orientation of the hand.

4.1 Cylinder

First, we consider the cylinder shown in figure 2(a). A
total of four feasible grasps exist for this object: One for

each end, and two along the major axis (corresponding

to “overhand” and “underhand” configurations). Fig-

ures 3(a) and 3(b) depict a typical set of samples col-
lected for the cylinder. Samples located at the extremes

of the X axis correspond to cases in which the palm of

the hand is approximately orthogonal to the object’s
major axis. Intermediate samples correspond to cases

in which the hand is exploring the lateral surface of the

cylinder in either an overhand or underhand configura-
tion.

In figure 3(a), the 3D position of the hand is shown
throughout the course of the experiment, while figure

3(b) provides a visualization of the corresponding hand

orientations. Orientation of the hand is represented as
a single point on the surface of the unit sphere: imagine

(a) (b)

(c) (d)

Fig. 2 The set of objects used in the clustering experiments.
(a) Cylinder; (b) Spray bottle; (c) Hammer; (d) Heat gun.

that the object is located at the origin of the sphere;

the point on the surface of the sphere corresponds to
the intersection of the palm with the sphere. Note that

this visualization technique aliases the set of rotations

about the line perpendicular to the palm. For example,
in figure 3(b), there is no way to distinguish grasps

using an overhand configuration from those that use an

underhand configuration.
Figures 3(c) and 3(d) show the most common solu-

tion discovered by our algorithm for the cylinder. The

position and orientation components of the model are

shown independently, with similarly colored ellipsoids
and circles constituting a single cluster in the pose space

of the hand. Each circle represents the great circle on

S3 defined by a girdle distribution, while each ellipsoid
corresponds to the first standard deviation boundary of

the corresponding multivariate Gaussian.

A single cluster was learned for each heuristically-
identified grasp type. Due to the significant rotational

symmetries present in the object, a girdle distribution

was selected as the orientation component for each grasp.

The end grasps correspond to the green and red clus-
ters, while grasps along the major axis are represented

by the blue and magenta clusters. Because all positions

along the major axis of the cylinder are viable for grasp-
ing, the corresponding ellipsoids have a larger volume,

and are more elongated than those representing the

end grasps. Also, notice that the position components
of the overhand and underhand grasps overlap signif-

icantly. However, the algorithm selects two clusters to

represent them because their corresponding orientation

components are best described by two different girdle
distributions (even though our visual representation of

orientation aliases this fact).

Figure 4 shows the mean true positive rate, preci-
sion, and false discovery rate for a variety of objects

over the course of 10 trials. Focusing our attention on

the cylinder, we see that on average the true positive
rate and precision are above 0.9. Thus, a majority of the

learned models matched our heuristic. However, there

is a slight overfitting issue. For example, on one occa-

sion the algorithm identified three clusters for one of the
grasps along the lateral surface of the cylinder. Each of

these clusters used a Dimroth-Watson component for

orientation, instead of a girdle distribution.

4.2 Spray Bottle

The next object we consider is the spray bottle shown

in figure 5. Four of the feasible grasps are shown in
the figure, with three of them having symmetric grasps

achieved by rotating the object 180 degrees about its

major axis. There is one grasp that may be made near
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(a) (b)

a

(c) (d)

Fig. 3 The training examples and learned affordance model for the cylinder within an object-centered coordinate frame. (a) The

position of the hand; (b) The orientation of the hand; (c) The position component of the learned affordance model; (d) The orientation
component of the learned affordance model.

the trigger (a), two from the side (b), two from the top

(c), and two from the bottom (d). Each of these possi-

bilities was extensively explored by the human teacher,
and the collected training examples are shown in figures

7(a) and 7(b).

The affordance model learned by our algorithm for

the spray bottle is shown in figures 7(c) and 7(d). No-

tice that there are a total of seven clusters (one for each

demonstrated grasp type), where each of the colored
line segments represent the mean rotation vector of a

Dimroth-Watson distribution. The red and gray clus-

ters represent the two symmetric grasps near the bot-
tom of the spray bottle shown in figure 5(d). The green

and brown clusters describe the set of grasps along the

object’s major axis as it is approached from the right
and left, respectively (b). Notice that hand orientation

is approximately orthogonal to the spray bottle’s ma-

jor axis in both cases. Also, the elongated nature of the

ellipsoids captures the large variation in hand position
along the major axis. Grasp approaches from the top

of the spray bottle are represented by the orange and

magenta clusters (c). Because the nozzle of the spray

bottle is much smaller in comparison to its base, hand

position and orientation are more constrained. This can

be seen by comparing the relative volumes of the ellip-
soids representing grasps near the base with those near

the nozzle. Finally, the blue cluster captures the trigger

grasp. Notice that in figure 7(a) the set of hand posi-

tions used to grasp the trigger seem to be comprised of
two distinct sets of points. However, because the ori-

entation of the hand does not vary much for grasps

involving trigger, the algorithm allocates only a single
cluster.

Over the ten experiments, an average true positive

rate of 1.0 was achieved (figure 4). Therefore, every clus-

ter we heuristically identified was in fact learned by the

algorithm in each of the experiments. However, notice
that the precision is slightly below 1.0. This is a result

of overfitting: the algorithm split one cluster into two

in a single experiment.
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Fig. 4 Contingency table summary for each of the objects used
in the clustering experiments.

4.3 Hammer

The third object presented to the human teacher was

the hammer shown in figure 2(c). This object was se-

lected for a variety of reasons. First, it presented an
interesting mixture of orientation constraints. Second,

a hammer might be useful to a robot performing a real

world task such as building a structure. The possible

grasps include those near the handle and the head of
the hammer, each of which was demonstrated by the

human teacher, and are shown in figures 6(a) and 6(b),

respectively. Note that the hand orientations used to
grasp the handle always resulted in the thumb being

closer to the head of hammer, and that the grasp shown

in figure 6(b) has a symmetric grasp that is achieved
by rotating the hammer 180 degrees about its major

axis. Hence, a total of three grasps are expected by our

heuristic.

A typical collection of training examples for these

grasps is shown in figures 8(a) and 8(b). The corre-

sponding model learned by our algorithm is shown in

figures 8(c) and 8(d). The green cluster represents the
set of grasps that may be made with respect to the

handle of the hammer. The elongation of the green

ellipsoid along the major axis essentially encodes the
handle’s length. This means that any position on it is

viable for grasping. In addition, the hammer may be

grasped as long as the orientation of the hand is ap-
proximately orthogonal to the handle. Thus, a girdle

distribution was learned for this portion of the object.

The other two clusters (red and blue) involve grasps

near the head of the hammer. These grasps are sym-
metric in that they are accomplished by grasping the

object from the top, rotating the hammer 180 degrees,

and then re-grasping. Since the head of the hammer is

(a)

(b) (c) (d)

Fig. 5 Four of the feasible grasps demonstrated by the human
teacher for the spray bottle. (a) The trigger grasp; (b) The grasp
from the right; (c) The top grasp; (d) The bottom grasp. Note

that the grasps shown in (b), (c), and (d) have symmetric grasps
that are achieved by rotating the spray bottle 180 degrees about
its major axis.

(a) (b)

Fig. 6 The feasible grasps demonstrated by the human teacher
for the hammer. (a) The handle grasp; (b) The head grasp.

much smaller in comparison to its handle, the red and

blue ellipsoids have less volume than the green ellip-

soid. Also, because grasping this portion of the object
involves very constrained hand orientations, the algo-

rithm selected Dimroth-Watson distributions to model

them.

4.4 Heat Gun

The heat gun shown in figure 2(d) was selected for many
of the same reasons as the hammer. It has a variety of

orientation constraints, and is similar in shape to other

real world objects such as a drill. The feasible grasps
for this object are shown in figure 9. In these exper-

iments, the barrel of the heat gun was only grasped

below the handle. Furthermore, the hand orientations

used to grasp the heat gun’s nozzle always resulted in
the thumb being closer to the handle (see figure 9(b)).

Even though three primary grasps were demonstrated,

our algorithm tends to choose solutions with four clus-
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(a) (b)

(c) (d)

Fig. 7 The training examples and learned affordance model for the spray bottle. (a) The position of the hand; (b) The orientation
of the hand; (c) The position component of the learned affordance model; (d) The orientation component of the learned affordance

model.

ters (figures 10(c) and 10(d)). This is reflected by the

higher false discovery rate shown in figure 4. The red

cluster corresponds to grasps along the handle of the
heat gun. A Dimroth-Watson distribution is used to

model the orientation of the hand because the human

teacher only grasped the handle in such a way that
affords the use of the trigger. The blue cluster repre-

sents approaches from the top where the hand may

be arbitrarily rotated about the object’s major axis,

with position being relatively constrained. The remain-

ing clusters (green and magenta) describe the set of

grasps along the lateral surface of the heat gun’s nozzle.
Ideally this would be a single cluster, but the algorithm

preferred to separate it into two. This may be due to

the fact that the nozzle widens as one approaches the
handle, which means the distribution in position varies

more in this region. However, both clusters did capture

the rotational symmetry in hand orientation afforded
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Fig. 8 The training examples and learned affordance model for the hammer. (a) The position of the hand; (b) The orientation of the
hand; (c) The position component of the learned affordance model; (d) The orientation component of the learned affordance model.

(a) (b)

(c)

Fig. 9 The feasible grasps demonstrated by the human teacher

for the heat gun. (a) The handle grasp; (b) The nozzle grasp; (c)
The top grasp.

by the nozzle. Thus, while not the expected solution,

the algorithm learned a reasonable solution a majority

of the time. This is supported by the high true positive
rate exhibited by the heat gun.

This result for the nozzle may be due to several dif-
ferent factors. First, Gaussian distributions may not be

suitable for modeling the positions of the hand when

grasping objects exhibiting a conical geometry. Second,

the algorithm may also be overfitting. Finally, it is pos-
sible that the heuristic is incorrect, and the algorithm

is actually finding an underlying structure in the pose

space of the hand.

5 Sensitivity Analysis

In order to gain a better understanding of the grasp

affordance learning algorithm, its performance is com-
pared to that of a baseline algorithm which removes the

filtering step described in section 3.2. Figure 11 shows

the mean true positive rate and mean precision for the
filtered and unfiltered versions of our algorithm. Notice

that the mean true positive rate drops slightly for most

of the objects when filtering is introduced. This is typi-
cally due to the elimination of solutions where a learned

cluster matches one of the heuristically defined clusters,

but it explains a small number of training examples.

However, for the spray bottle, the absence of filter-

ing causes more false negatives to be scored because gir-

dle distributions are learned as the orientation compo-

nent of a cluster, even though Dimroth-Watson distri-
butions were specified by the heuristic. When filtering is

introduced, the algorithm tends to throw out these so-

lutions, and as a result, the true positive rate increases.

Notice that for each of the objects the mean preci-

sion is lower when no filtering is performed. This occurs

because the unfiltered version of the algorithm tends to
allocate more clusters than the filtered version of the

algorithm. While many of these clusters may match

the heuristic (explaining the high mean true positive
rates), some of them are unnecessary. When filtering

is performed, many of the solutions with extra clusters

are eliminated, which results in a higher mean precision
for each of the objects.

When all of the objects are considered together, the

mean decrease of the true positive rate from the un-
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Fig. 10 The training examples and learned affordance model for the heat gun. (a) The position of the hand; (b) The orientation
of the hand; (c) The position component of the learned affordance model; (d) The orientation component of the learned affordance
model.

filtered to the filtered version of the algorithm is 0.02

(p < 0.36 according to a paired bootstrap test). How-

ever, the overall effect of introducing filtering produces
a mean increase in precision of 0.15 (p < 10−4). This

suggests that filtering facilitates the selection of models

that better match our heuristic.

6 Discussion

In this paper, we have presented a technique for learn-
ing canonical hand positions and orientations for reach-

to-grasp actions. Compact representations are constructed

from many example grasps made by clustering the pose

of the hand. For a given object, we want the set of affor-
dances to be small. This property enables the use of af-

fordances as a way to access “primitives” in higher-level

activities, including planning, learning, and the recog-
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Fig. 11 Contingency table comparison of the unfiltered and

filtered versions of the grasp affordance learning algorithm for
each of the objects used in the clustering experiments.

nition of motor actions by other agents (Brock et al

2005; Fagg et al 2004).

In particular, the clusters that have been learned

map directly onto resolved-rate controllers that can bring
a robot hand to a specific position and orientation rel-

ative to the object. Note that this control step makes

two assumptions: first, that the robot has a similar hand
morphology to the human demonstrator; second, that

haptic exploration methods are available to refine the

grasps once the hand is approximately in the right con-
figuration (Coelho and Grupen 1997; Platt et al. 2002).

Grasping experience for training the models does

not have to be derived from observation of human be-

havior, but can come from a robot performing the grasp-
ing task. Experience may be generated through either

automatic control or guidance from a human teleopera-

tor. Preliminary results using NASA’s humanoid robot
Robonaut have demonstrated the viability of extending

our approach to actual robot systems. In future experi-

ments, we plan to track the pose of objects visually, and

learn the corresponding affordances in an object cen-
tered coordinate frame. We are also currently design-

ing experiments that focus on using the learned grasp

affordance representation as a means of controlling and
planning robot grasping actions.

Our analysis presented here has focused entirely on

the pose of the hand. In current work, we are taking
steps to include the configuration of the fingers into

the model. This is desirable in that it leads to a more

complete representation of grasp affordances. Instead of

using joint distributions defined only over the position
and orientation of the hand, we create a joint distribu-

tion over hand pose and finger configuration. In order

to address the high dimensionality of the finger con-

figuration space, we describe clusters in an eigengrasp

space (Santello et al 1998; Ciocarlie et al 2007). The
learned clusters may then be used in conjunction with

other methods of low level control to successfully grasp

an object.

We are also interested in bridging the gap between

vision and grasping. Wang (2007) has recently presented

an approach that recognizes the identity and pose of
objects based on visual features. By using this interme-

diate object representation one can establish an indi-

rect connection between visual features and the hand

pose clusters learned by our algorithm. This approach
could also allow one to learn representations that are

not specific to any particular object, but to components

of objects. Thus, if a novel object is composed of parts
similar to those in previous experience, the robot should

still be able to grasp the object.

Note that this affordance representation captures
the syntax of grasping (i.e., what grasps are possible

for a given object), and does not take into account the

semantics of grasping (how an object is to be used in

the larger context of a task). This distinction, which is
drawn by Gibson, is a critical one for a learning agent.

When a new task is presented, the syntax of interact-

ing with a specific object can be readily accessed and
used. The learning agent is then left with the problem

of selecting from a small menu of possible grasping ac-

tions to solve the new task. This abstraction can have
important implications for the agent quickly learning

to perform in these novel situations.
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A Normalization Terms

The normalization terms of the Dimroth-Watson and girdle dis-
tributions are as follows:

F (k) =
2

π
R π
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2π

0
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2 dξ1 dθ
,

and

F̄ (k) =
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ek
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´ .

See de Granville (2008) for the derivations of both normalization
terms.

B Maximum Likelihood Estimates of the

Concentration Parameters

For computational efficiency, the maximum likelihood estimates

of k for the Dimroth-Watson and girdle distributions are approx-
imated by:

k = G−1(z) ≈ 1.9090 + 3.4599 log (z) log (1.6376 z) ,

and

k = Ḡ−1(z̄) ≈ 4.2648 + 4.0254 log (z̄) log (5.2532 z̄) ,

where
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