
Spatio-Temporal Multi-Dimensional Relational Framework Trees

Matthew Bodenhamer

School of Computer Science

University of Oklahoma

Norman, OK, USA

mbodenhamer@ou.edu

Samuel Bleckley

School of Art

University of Oklahoma

Norman, OK, USA

bleckley@ou.edu

Daniel Fennelly

Department of Psychology

Reed College

Portland, OR, USA

fennelld@reed.edu

Andrew H. Fagg, Amy McGovern

School of Computer Science

University of Oklahoma

Norman, OK, USA

{fagg, amy}@cs.ou.edu

Abstract—The real world is composed of sets of objects that
move and morph in both space and time. Useful concepts
can be defined in terms of the complex interactions between
the multi-dimensional attributes of subsets of these objects
and of the relationships that exist between them. In this
paper, we present Spatiotemporal Multi-dimensional Relational
Framework (SMRF) Trees, a new data mining technique that
extends the successful Spatiotemporal Relational Probability
Tree models. From a set of labeled, multi-object examples
of a target concept, our algorithm infers both the set of
objects that participate in the concept and the key object and
relation attributes that describe the concept. In contrast to
other relational model approaches, SMRF trees do not rely on
pre-defined relations between objects. Instead, our algorithm
infers the relations from the continuous attributes. In addition,
our approach explicitly acknowledges the multi-dimensional
nature of attributes such as position, orientation and color. Our
method performs well in exploratory experiments, demonstrat-
ing its viability as a relational learning approach.

Keywords-relational learning; continuous multi-dimensional
attributes; multiple instance learning; spatial representations

I. MOTIVATION AND BACKGROUND

The world is composed of collections of objects, each

with a set of associated attributes. Whether it is a robot

preparing to perform the next step in a cooking sequence or

an agent generating warnings of severe weather, only a spe-

cific subset of the observable objects is relevant to making

decisions about what steps to take next. In particular, the

relevance of an object is determined by its attributes and the

relations that it has with other objects. These attributes are

often continuous and multi-dimensional, such as Cartesian

positions or colors in a red-green-blue (RGB) space. Given

a set of training examples, our challenge is to discover the

objects that play the crucial roles in the examples as well as

the description of the key object attributes and relations.

Our work is inspired by the successful Relational Prob-

ability Tree (RPT) [1] and the Spatiotemporal Relational

Probability Tree (SRPT) [2] models. Both approaches create

probability estimation trees, a form of a decision tree with

probabilities at the leaves. Splits in the decision trees can

ask questions about the observed properties of the objects

or their relationships. Given a novel graph, these decision

trees estimate the probability that the graph contains a set

of objects that corresponds to some target concept. Like

Kubica et al. [3], [4], these approaches build models using

pre-specified categorical relations.

The Spatiotemporal Multidimensional Relational Frame-

work (SMRF) extends this prior work in two key ways.

The first extension is the ability to ask questions based

on continuous, multi-dimensional attributes. For example,

the color of a pixel can be represented as a RGB tuple.

Capturing a concept such as “yellow” requires that the blue

variable be low but the green and red variables can take on

values almost within their full range so long as they vary

together. While RPTs and SRPTs can split on individual

continuous variables (e.g., [5], [6], [7]), it is desirable to

explicitly acknowledge the fact that multiple dimensions can

covary in interesting ways. To address this issue, SMRF

trees construct decision surfaces within multi-dimensional

metric spaces. The SMRF tree learning algorithm selects

the location of the surface as to produce splits with high

utility.

The second key extension made by the SMRF approach

is the ability to define relational categories dynamically. For

example, objects may have a position attribute defined within

some global coordinate frame. The decision tree splits can

be made within a metric space that captures the position of

one object relative to another (or set of others). As with the

multi-dimensional object attributes, splits on these relational

attributes are made using decision surfaces within the metric

space. In contrast, RPTs and SRPTs ask relational questions

using categorical descriptions of the attributes.

II. PROBLEM OVERVIEW

SMRF trees assess the probability that a given collec-

tion of objects contains an instance of a particular target

concept. We model these collections of objects as graphs

with attributed objects and relations. Many relations in our

context are implicitly defined as a function of the attributes

of the objects. For example, objects may include a position

attribute, as defined within some fixed coordinate frame. In

addition, the position of one object may be described relative

to that of another. A target concept encompasses a subgraph

and encodes specific attribute values for a subset of objects

and relations.

A data set is composed of a set of graphs, Γ. Each graph,

Gj ∈ Γ, is assigned a “ground truth” label of positive if it

contains the target concept and negative if it does not. The

set of positive graphs is denoted G+ and the set of negative

graphs is denoted G−. Each graph Gj contains some number

of objects. We refer to the ith object of the jth graph as oj
i .

Each object has a set of attributes.

The learning problem to be solved is: given some number

of positive and negative graphs, construct a model that can

assess the probability that a given graph contains the target

concept [8]. Each graph is classified as either positive or

negative on the basis of whether or not some subset of its

objects matches the target concept definition. For instance,

a target concept may be “a red object near a green object.”

When, for example, blue objects are also present in some

of the positive graphs, the learning approach must weigh

the set of possible target concepts, and choose the one that

best explains the positive graphs. This problem of having

to identify the subset of objects and their relationships that

define a target concept can be viewed as one of multiple

instance learning (MIL) [9], [10], [11], [8].

III. SMRF TREES

Figure 1(a) illustrates an example SMRF tree that identi-

fies “yellow” objects. The first node dynamically binds some

object from the graph to the variable A. This instantiation

action enables SMRF trees to classify graphs based on

attributes of particular objects or of relations between sets

of objects. The question in the figure has been rendered in

English, however the question is actually asked with respect

to the color represented as a 3-vector (RGB). Specifically,

the color of the object is compared with a decision volume

in the RGB space. The answer to the question is “yes” if

the object’s color property falls inside this volume, “no” if

not, and “error” if the object has no color attribute.

The leaf nodes represent a probability function over

membership in the target concept. In this example, “yellow”

objects are the most likely examples of the target concept.

When this tree is used to classify the set of objects shown in

Figure 1(c), A is instantiated with each object in turn. Here,

objects 1 and 4 fall into the “Yes” leaf and are assigned a

probability of 98% of being in the target concept. Such a

probability would arise during the training process when a

vast majority (but not all) of the examples arriving at this

node are labeled as positive examples of the target concept.

Objects 2, 3 and 5 are sorted into the “No” leaf.

The SMRF tree is capable of asking questions with respect

to the properties of multiple objects and relations. A more

complicated example tree is given in Figure 1(b). This tree

identifies a “yellow object that is near a red object.” As

before, A is instantiated with each object in turn. When A =

1 or A = 4, B is instantiated with a second object drawn from

the graph. The SMRF tree then asks whether B is “red” by

examining another color model. If this is the case, the final

Figure 1. (a) A hand-crafted SMRF tree that identifies yellow objects.
Although we describe the decision tree split with a categorical label
(“yellow”), the concept is represented as a volume in RGB space. (b) A
tree that identifies yellow objects that are near red objects. (c) A set of
objects scattered on a plane.

question examines the relative position of A and B. In this

example, the position of A is measured within a coordinate

frame whose origin is defined by the position of object B.

We refer to a specific ordered list of instantiations (e.g., A

= 1 and B = 2) as an instantiation sequence. The variables

are implicit in the order of the sequence. For example, the

set of instantiation sequences that is expanded by the tree

in Figure 1(b) for the objects in Figure 1(c) is:

• leaf 1: {(2), (3), (5)},
• leaf 3: {(1, 2), (1, 4), (4, 2), (4, 1)},
• leaf 5: {(4, 3)}, and
• leaf 6: {(1, 3), (1, 5), (4, 5)} .

Formally, for a given graph Gj and edge e in the tree,

we refer to ith instantiation sequence as eIj
i . The set of all

instantiation sequences at edge e and graph Gj is eIj , and

the set of all instantiation sequences at edge e for all graphs

is eI. It is also convenient to refer to the set of instantiation

sequences that arrive at a node in the tree from its parent

edge. For example, we refer to qI as the set that arrives to

question node q and kI as the set that arrives at leaf k.

Each node in a SMRF tree performs specific operations

on the set of instantiation sequences. These operations are

described in the following sections.

Root Node. The root node, represented by a triangle

in Figure 1(a,b), is the point in the tree at which no

instantiations have been performed. Hence, this node has

no parent edge and a single child edge. For each graph Gj ,

the root node induces a single instantiation sequence on the

child edge. Specifically, 0Ij = {()}.

Instantiation Nodes. Instantiation nodes assign a new

object to each instantiation sequence. Specifically, for each

instantiation sequence arriving from the parent edge, all

possible non-duplicate objects from the graph are appended

to the sequence:

cIj =
⋃

I∈pIj

⋃

o∈(Gj−I)

APPEND(I, o),

where pIj is the set of instantiation sequences arriving at

the parent edge of the instantiation node for graph Gj ,
cIj is

the set of corresponding instantiation sequences at the child

edge of the instantiation node, and APPEND(I , o) adds new
object o to the end of the sequence of objects encoded by

I . The set of objects (Gj − I) are those in graph Gj that

have not been instantiated in I .

Note that each instantiation sequence at the parent pIj
i

gives rise to a set of instantiation sequences. We denote this

set of child instantiation sequences with cIj
i ⊂

cIj .

Question Nodes. Question nodes sort instantiation se-

quences arriving at the parent edge into one of several

child edges as a function of the attributes of the objects

contained within the instantiation sequence and their as-

sociated relations. It is possible to capture this decision

volume in many ways. Here, we represent the question at

node q as a probability density function (pdf) defined over

I (designated by model Mq) and a threshold. Specifically,

if p(I|Mq) ≥ Θq, then I is sorted into the Yes child edge.

If p(I|Mq) < Θq, I , is sorted into the No edge.

Model Mq defines: 1) a function, called a mapping

function, that maps the attributes of the objects contained

by I into a metric space 2) a pdf over the metric space, and

3) the parameters of the pdf. Mapping functions can map any

combination of attributes from any combination of objects

in I into a metric space, providing a wealth of possibilities.

For example, a mapping function could capture the position

of an object relative to another object, the position of an

object relative to a coordinate frame defined by several other

objects, or the relative color of two objects.

In the case that a mapping function references an attribute

that is not defined by some object, the instantiation sequence

cannot be properly evaluated. In this case, the instantiation

sequence is sorted into the Error edge. The Error edge is

considered a normal edge of the tree.

Leaf Nodes. We denote the set of leaves for a given tree

with L. We refer to instantiation sequences that arrive at

some leaf as complete instantiation sequences. The set of

complete instantiation sequences that arrives at leaf k ∈ L
is denoted kI, and the set of all complete instantiation

sequences is LI. Instantiation sequences sorted into leaf

k are assigned a probability Pr(k) of encoding the target

concept. L(I) denotes a function that maps a complete

instantiation sequence I ∈ LI to the leaf to which it

is sorted. Pr(L(I)) denotes the probability that complete

instantiation sequence I encodes the target concept.

Graph Evaluation. The SMRF tree assesses the probabil-

ity that a given graph contains the target concept. A graph Gj

is evaluated by first identifying the set of complete instanti-

ations, LIj . The highest probability complete instantiation

sequence determines the probability of the entire graph.

Specifically:

Pr(Gj contains the target concept) = max
I∈LIj

Pr(L(I)).

IV. LEARNING ALGORITHM

The objective of the SMRF tree learning algorithm is to

grow a tree that can accurately predict whether or not a

particular graph contains the target concept. For the purposes

of generality, we assume that the information that is provided

at the time of training does not identify the key objects or

their associated properties. The tree learning problem can

therefore be seen as an instance of the multiple instance

learning problem [9], [10], [11], [8]. Each set of complete

instantiation sequences, LIj , is a bag that is labeled as either

containing an example of the target concept (a positive bag)

or not (a negative bag). The challenge is to identify the

target concept that, if found within a bag, results in the bag

as being labeled as a positive example. In our context, if

the bag is a positive example, then we expect the tree to

assign a high probability of being in the target concept to

at least one complete instantiation sequence. The remaining

instances are assumed to not be examples of the target

concept, and thus should be assigned a low probability.

If the bag is labeled as being a negative example, then

all complete instantiation sequences are considered to be

negative examples of the target concept.

The challenge in growing the tree is one of improving

the sorting of positive complete instantiation sequences from

negative ones. However, we do not know a priori which

complete instantiation sequences are the positive or negative

examples of the target concept. Following Zhang & Gold-

man (2001) [11], we address this question by introducing

a set of hidden variables that represent the probability that

each instantiation sequence corresponds to an example of the

target concept. Specifically, for each instantiation sequence,

eIj
i , there exists a variable, denoted h(eIj

i), that captures this
probability. Since negative bags cannot contain the target

concept, no instantiation sequences from a negative graph

can ever match the target concept. Thus, h(eIj
i) = 0 for

all instantiation sequences associated with negative graphs.

On the other hand, we assume that a positive bag contains

one example of the target concept.1 Specifically, for every

Gj ∈ G+,
∑

I∈LIj h(I) = 1.
The process of learning a SMRF tree from a given set

of labeled example graphs is performed incrementally. This

process involves two key components. The lowest level com-

ponent, question optimization (described in Section IV-A)

is responsible for the selection of model parameters, hid-

den variables and leaf probabilities given a specific model

and mapping function. The highest level component, tree

growth (Section IV-B) is responsible for first selecting the

candidate leaf nodes for possible expansion and identifying

the particular form of expansion, including selection of

the question models and mapping functions. Following the

question optimization step for each of these candidates, this

high-level component is responsible for deciding whether the

tree should be expanded, and if so, which of the candidate

expansions to keep.

A. Question Optimization

Given that the type of question and the mapping function

have already been chosen, we employ an iterative algorithm

that simultaneously estimates the hidden variable states (the

h(I)’s) and the various model parameters (Pr(k)’s and the

parameters of Mq). An outline of the algorithm is given in

Section IV-C (see OptimizeQuestion).
Selecting Question Parameters. Assuming known h(I)’s

for a set of instantiation sequences, qI, the goal is to

select model parameters for question node q that will sort

instantiation sequences with high h from those with low

h. We do this by first computing the weighted maximum

likelihood parameters for the model pdf, where the sample

weights are determined by the associated h’s. Specifically,
the weighted model likelihood is defined as follows:

L̂(q) =
∏

I∈qI

p (I|Mq)
h(I) . (1)

The intuition is that instantiation sequences with higher

h values should contribute the most to the selection of

the parameters, whereas instantiation sequences with low h
values should contribute little to nothing.

The next step is to select the model threshold Θq that

will determine which instantiation sequences will be sorted

into the Yes/No edges of the tree. For the results reported

in this paper, we choose a fixed likelihood threshold that

corresponds to 4σ. This choice allows a high percentage

1In the general MIL case, one assumes one or more instances of the
target concept in each positive example.

of false negatives to be eliminated, without dramatically

increasing the number of false positives.

Estimating Leaf Node Probabilities. In typical probabil-

ity trees, the probability associated with a leaf node can be

estimated from a training set by counting. However, the true

labels of the instantiation sequences are unknown. Instead,

we employ “soft” counting. Formally, this is expressed as:

Pr(k)←
∑

I∈kI

h(I)/
∣

∣

kI
∣

∣. (2)

Hidden Variable Estimation. Given that the question

parameters have been estimated (and consequently the in-

stantiation sequences have been sorted), and that the leaf

node probabilities have also been estimated, the algorithm

seeks to select a set of h’s that are consistent with the sorting.
This is accomplished by maximizing the likelihood (L) of
correct sorting:

L =
∏

I∈LI

Pr (L(I))
h(I)

(1− Pr (L(I)))
(1−h(I))

. (3)

Solving for the h’s reduces to a linear programming problem

in which log L is maximized subject to set of constraints.

These constraints are:

• for each I: 0 ≤ h(I) ≤ 1,
• for each Gj ∈ G− and each I ∈ 0Ij : h(I) = 0,
• for each Gj ∈ G+ and each I ∈ 0Ij : h(I) = 1, and
• for each instantiation sequence arriving at an instantiation

node, pIj
i : h(pIj

i) =
∑

I∈cI
j

i

h(I).

In the latter constraint, a parent instantiation sequence dis-

tributes it’s associated h across its children.

As detailed in OptimizeQuestion, the h’s that are local

to the question node are first selected to maximize (3)

(along with the question node parameters and leaf node

probabilities). Then, the h’s throughout the tree are re-

estimated. This process is repeated until a local maxima

is reached. This hierarchical approach allows for a correct

model to be learned at the question node, before the other

models in the tree are adjusted to account for the new one.

B. Tree Growth

The tree growth process is responsible for identifying can-

didate leaf nodes to expand, selecting the type of expansion

to perform, evaluating the consequences of the expansions

and choosing which candidate to keep. In this section, we

describe the key details. The algorithmic components are

outlined in Section IV-C.

Identifying Candidate Leaves for Expansion. At the

beginning of any given iteration in the learning process

(represented by a call to GROWTREE in Section IV-C), the

learning algorithm begins by choosing a set of candidate

leaves for expansion. The algorithm first evaluates all leaves

according to an inexpensive expansion criterion, and then

selects the best m for possible expansion. The expansion

criterion is the expected increase in likelihood (Eq. 3) that

would result by adding an “optimal” split between the Yes

and No branches.

Selecting Candidate Expansions. Once a leaf node has

been selected for expansion, the details of the expansion

must be determined. We first determine the structural form

of the expansion, and then select the mapping function that

will determine the question that is to be asked.

The structural form of the expansion is determined by

replacing the leaf node with a new sub-tree. The possible

forms of this subtree are:

• a question node (designated tq in algorithm

EXPANDLEAF);

• an instantiation node, followed by a question node (tiq);
• two instantiation nodes, followed by a question node

(tiiq).

In all cases, question nodes have child leaf nodes that

correspond to the Yes, No and Error branches.

The mapping function is sampled from a set of candidate

mapping functions (within algorithm FINDBESTMODEL).

This set of mapping functions is determined by 1) the set

of objects in the arriving instantiation sequences, 2) the

attributes of these objects, and 3) the attributes of the

relations between these objects. For example, a mapping

function may describe the position of the second object in

the instantiation sequence within a coordinate frame that is

rooted at the first object and whose orientation is determined

by the position of the third object relative to the first.

Evaluating the Candidate Expansions. For each can-

didate expansion, the parameters of the question and leaf

nodes, and the instantiation sequence probabilities (the

h(I)’s) are selected as described in Section IV-A (algo-

rithm OptimizeQuestion). When the candidate expansion

includes an instantiation node, the set of initial h(I) values

for the child instantiation sequences is sampled multiple

times. For each of these samplings, OptimizeQuestion is

performed. We maintain the best performing parameter set

(with respect to L) for the candidate expansion.

Over the set of candidate expansions, the best performing

candidate tree, Tc, is considered as a replacement for the

current tree. If this new tree performs significantly better

than the current tree according to a likelihood ratio test,

then this replacement is kept. Because the sample size is

reasonably large, −2 log L
LTc

is approximately χ2 distributed

with degrees of freedom equal to the difference in the

number of parameters in the candidate tree and the current

tree [12]. The number of parameters in the tree is the number

of leaf nodes plus the sum of the number of distribution

parameters in each question node. To compensate for the

multiple comparisons we employ a Bonferroni correction to

obtain a collective cutoff of α = 0.05 [13].

C. Algorithm Pseudocode

GROWTREE(T,Γ)
for k ∈ LT

compute expansion criterion for each leaf

for m-best leaves, i = 1 to m
Ti ← EXPANDLEAF(k, T,Γ)

return Ti with highest significant LTi
(Eq. 3)

EXPANDLEAF(k, T,Γ)
expansion types← {tq, tiq, tiiq}
for t ∈ expansion types

replace leaf k in T by expansion type t, to make Tt

let qt be the newly-created question node

(LTt
,Mqt

)← FINDBESTMODEL(Tt, qt)
set Mqt

as the model of node qt

return Tt with greatest LTt

FINDBESTMODEL(T, q)
Lbest ← −∞; qbest ← None
F ← samples of the set of mapping functions

for fm ∈ F
H ← samples of the set of initial h(I) values

for h ∈ H
(Lh, qh)←OPTIMIZEQUESTION(T, q, qI, fm, h)

LBest ← maxh Lh; qbest ← qh

return (LBest,Mqbest
)

OPTIMIZEQUESTION(T, q,q I, fm, hinit)

h(qIj
i)← hinit; Lold ← −∞; Lnew ← LT

while (Lnew − Lold) > ǫ
while (Lnew − Lold) > ǫ

choose params of Mq to maximize L̂(q) (Eq. 1)

estimate leaf node probabilities (Eq. 2)

estimate h’s local to q to maximize LT (Eq. 3)

Lold ← Lnew;Lnew ← LT computed with new h’s
estimate all h’s to maximize LT (Eq. 3)

Lold ← Lnew; Lnew ← LT computed with new h’s
return (Lnew, q)

V. EXPERIMENTAL RESULTS

Our experimental goals are to show that the learning

algorithm is able to 1) select the appropriate attributes and

mapping functions from a range of possibilities, 2) create

complex target concepts involving multiple questions, and

3) deal with the presence of “distractor” objects that do not

play a role in the true target concept. We employed data

sets involving objects with attributes of 2D position and

RGB color. We chose the following target concepts for our

experiments:

• a red object above a green object,

• a red object near a green object, and

• an object to the left of a lighter-colored object.

Note that each target concept not only involves the cre-

ation of categories of individual attributes (greenness, for

example) but also of relations between objects (nearness,

relative location and relative brightness). We also varied the

number of excess objects in each example by adding two

and five distractor objects to the graphs.

A number of different mapping functions were made

available to the learning algorithm. The algorithm could

choose to model the absolute location of an object in R
2,

the Euclidean distance between two objects in R
2, or the

difference vector between two objects in R
2. The pdfs

used for these models were Gaussian distributions of 2, 1

and 2 dimensions, respectively. For the color attribute, the

algorithm could choose to model either the RGB color of a

single object, the Euclidean distance in RGB space between

the colors of two objects, or the difference vector in RGB

space between the colors of two objects. These pdfs were

also Gaussians of 3, 1 and 3 dimensions.

For each of the three data sets, 100 positive example

graphs and 100 negative example graphs were generated

using a set of hand-selected rules. We employed 10-fold

cross-validation. For each of the 10 experiments, 90 exam-

ples of each type were used for training and the remaining

10 examples of each type were withheld for testing. In all

cases, performance is reported in terms of these test sets.

Because SMRF trees classify probabilistically, we measure

classification performance in terms of the receiver operating

characteristic (ROC) curve and the area under the curve

(AUC).

We performed a total of five separate experiments. The

first three experiments correspond to the three target con-

cepts in which no distractor objects were present in any of

the examples (all objects in each example played a role in the

target concept). The two remaining experiments correspond

to the red above green target concept with two and five

distractor objects in each example. These distractor objects

played no role in the target concept.

For the red near green experiment (zero distractors), the

resulting trees tend to have structure similar to that shown in

Figure 1(b). However, on average, the trees contain 4.4 ques-

tion nodes, whereas the ideal tree contains only three nodes.

Nevertheless, the mean AUC over the ten experiments is

0.92. The learned trees for the red above green experiments

also perform well. As an example, the mean ROC curve

for the 2 and 5-distractor cases are shown in Figure 2. The

standard deviation of the curves is represented as a shaded

area around the mean. The mean AUC for these two curves

is 0.94 and 0.89, respectively.
The results of all five experiments are summarized in

Table I. This table shows the mean and standard deviation

of the AUCs, the number of question nodes per tree, and

the total relative instantiation sequence count (TRISC). The

minimum number of question nodes that can represent the

light on right target concept is two. The minimum number

(a) Red Above Green: 2 Distractors

(b) Red Above Green: 5 Distractors

Figure 2. Mean ROC Curves over ten cross-validated experiments for the
2 and 5-distractor Red above Green experiments.

of question nodes for the remaining concepts is three.

TRISC measures how well the SMRF algorithm avoids

the combinatorial explosion of considering all orderings of

objects in the examples, and is defined as:

TRISC = |LI| /
∑

Gj∈Γ

|Gj |,

where smaller values approaching unity are better.

The algorithm performs consistently across the no-

distractor experiments. The only notable difference is that

the light on right experiment requires on average more than

one fewer question node, reflecting the fact that this target

concept requires one less node in the ideal case. The ideal

TRISC of unity of these experiments is due to the fact that

with no distractors, there can never be more complete instan-

tiation sequences than objects regardless of the number of

Table I
SMRF CLASSIFICATION PERFORMANCE

Target Distractors AUC Num. Qs TRISC

R near G 0 0.92 ± .050 4.4 ± 0.9 1.0 ± 0.0

Light on Rt 0 0.96 ± .036 3.0 ± 1.2 1.0 ± 0.0

R above G 0 0.92 ± .071 4.5 ± 0.7 1.0 ± 0.0

2 0.94 ± .040 3.1 ± 0.3 1.4 ± 0.06

5 0.89 ± .090 3.6 ± .91 1.7 ± 0.23

Learning algorithm performance on five problems. For each problem, we
report the mean and standard deviation over ten cross-validated experiments
of the Area Under the Curve (AUC), number of question nodes in the
learned tree and the Total Relative Instantiation Sequence Count (TRISC).

instantiation nodes. As the number of distractors increases,

the average AUC does not drop substantially. The TRISC

metric does show an increase as the number of distractors

increases. However, this increase is substantially smaller

than the polynomial growth that is expected in the worst

case. This indicates that the learned trees tend to sort many

of the instantiation sequences into shallow branches.

VI. DISCUSSION AND CONCLUSION

The SMRF tree learning algorithm must simultaneously

identify the objects contained within the training set graphs

that participate in the target concept, along with the set

of object and relational attributes that explain the target

concept. The algorithm performs well for the synthetic tasks

reported in this paper. Given the preliminary status of the

SMRF tree algorithm implementation, we feel that these

results indicate that this learning approach has a great deal

of promise. We are currently pursuing experiments in which

a robot must learn to distinguish the goal configuration of a

stacked set of objects from other presented configurations.

This capability will serve as the basis for the robot to learn

how to complete a task given the current configuration of a

set of objects.

Much work still remains to be done to realize a full imple-

mentation of the SMRF tree approach. Future components

will focus on incorporating temporal attributes and relations

into the learning algorithm. In addition, we plan to add

the ability for SMRF trees to make predictions about the

unobserved attributes of an object or its relations. This step

will, for example, allow a SMRF tree to predict the future

location of an object with respect to other objects in the

graph. We plan to demonstrate the utility of this learning

approach in variety of domains, including the learning of

robotic manipulation sequences from demonstration by a

human teacher, and the prediction of the likely touch-down

region of tornadoes.

ACKNOWLEDGMENT

This material is based upon work supported

by the National Science Foundation under Grant

Nos. IIS/REU/0755462 and IIS/CAREER/0746816.

REFERENCES

[1] J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning
relational probability trees,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2003, pp. 625–630.

[2] A. McGovern, N. Hiers, M. Collier, D. J. Gagne II, and
R. A. Brown, “Spatiotemporal relational probability trees,”
in Proceedings of the 2008 IEEE International Conference
on Data Mining, Pisa, Italy, December 2008, pp. 935–940.

[3] J. Kubica, A. Moore, and J. Schneider, “Tractable group
detection on large link data sets,” in The Third IEEE Interna-
tional Conference on Data Mining, X. Wu, A. Tuzhilin, and
J. Shavlik, Eds. IEEE Computer Society, 2003, pp. 573–576.

[4] J. Kubica, A. Moore, D. Cohn, and J. Schneider, “Finding
underlying connections: A fast graph-based method for link
analysis and collaboration queries,” in Proceedings of the
International Conference on Machine Learning, 2003, pp.
392–399.

[5] D. Jensen and L. Getoor, “IJCAI 2003 workshop on
learning statistical models from relational data,” 2003,
http://kdl.cs.umass.edu/srl2003/.

[6] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning
probabilistic relational models,” in Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1999, pp.
1300–1309.

[7] L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning
probabilistic models of link structure,” Journal of Machine
Learning Research, vol. 3, pp. 679–707, 2002.

[8] A. McGovern and D. Jensen, “Identifying predictive struc-
tures in relational data using multiple instance learning,” in
Proceedings of the 20th International Conference on Machine
Learning, 2003, pp. 528–535.

[9] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez, “Solv-
ing the multiple-instance problem with axis-parallel rectan-
gles,” Artificial Intelligence, vol. 89, no. 1-2, pp. 31–71, 1997.

[10] O. Maron and T. Lozano-Pérez, “A framework for multiple-
instance learning,” in Advances in Neural Information Pro-
cessing Systems 10, M. I. Jordan, M. J. Kearns, and S. A.
Solla, Eds. Cambridge, Massachusetts: MIT Press, 1998,
pp. 570–576.

[11] Q. Zhang and S. Goldman, “EM-DD: An improved multiple-
instance learning technique,” in Proceedings of Neural Infor-
mation Processing Systems, vol. 14. MIT Press, 2001, pp.
1073–1080.

[12] J. P. Huelsenbeck and K. A. Crandall, “Phylogeny estimation
and hypothesis testing using maximum likelihood,” Annual
Review of Ecology and Systematics, vol. 28, pp. 437–466,
1997.

[13] D. Jensen and P. Cohen, “Multiple comparisons in induction
algorithms,” Machine Learning, vol. 38, no. 3, pp. 309–338,
2000.

