
  

   

Abstract—The interest in Brain Machine 
Interface (BMI) systems has increased 
tremendously in recent times; many groups 
have become involved in this type of 
research, and progress has been quite 
encouraging.  However, two fundamental 
limitations remain: 1) With a few notable 
exceptions, BMIs extract only kinematic 
information from the brain, ignoring the 
wealth of force or kinetic information also 
present in the primary motor cortex, and 2) 
most existing BMIs depend exclusively on 
natural vision to guide movement, lacking 
the rapid proprioceptive feedback that is 
critical for normal movement. The work 
reported here describes our efforts to 
address both of these limitations. 

I. DECODING OF KINETIC SIGNALS FOR LIMB 
CONTROL 

MI-based control of a computer cursor or a robotic or 
simulated limb by monkeys has been demonstrated by 

several groups [1-5].  Up to now, the most common 
approach has been to extract only kinematic information 
from primary motor cortex (M1) When controlling an actual 
robotic limb, the production of the robot control signals (in 
the form of joint torques) is typically relegated to a feedback 
controller. This is typically accomplished with a PD 
(Proportional-Derivative) controller, which compares the 
“intended” state variables (position and/or velocity) to the 
current state of the limb (Fig. 1A). The output control signal 
for a single joint includes a component that is proportional to 
the error (the difference between the intended and actual 
state variables).  Because an error must be present before the 
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PD controller initiates a movement, the actual limb state will 
necessarily lag the intended state. The parameters of the PD 
controller can be tuned to minimize these delays under 
specific conditions, and to ensure that the arm will arrive at 
the decoded position without oscillation.  However, this 
approach is limited because optimal parameter settings 
depend on the current dynamical context.  For example, 
when the subject must grasp and apply a force to an object in 
order to push it, the change in system dynamics can result in 
suboptimal behavior of the PD controller. 
 One approach used in the robotics community to 
address this limitation of feedback PD control is that of 
feedforward, or inverted torque, control [6-9], in which an 
inverse dynamics model of the limb is used to estimate the 
appropriate torque signals given an intended trajectory.  
Instead, our approach is to assume that an inverse dynamics 
computation is performed within the central nervous system 
and that the results of this computation are reflected in 
neural activity and can be used as input to a torque decoder 
(Fig. 1B and C). 
 Our group has recently demonstrated that it is possible 
to decode both shoulder and elbow torque from M1 activity 
during a random target pursuit task [10].  In this task, the 
monkey produces arm movements that track a sequence of 
targets appearing in uniformly distributed locations on the 
screen, thereby sampling the position-velocity state space. 
We employ a linear filter decoding approach (Wiener filter) 
that considers the history of M1 neuronal activity as far as 
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Fig. 1.  A.  Most brain-machine interfaces decode kinematic signals, such as joint angular 
position θ(t), from the activity of an ensemble of cortical neurons.  The decoded signal is sent 
to a PD controller parameterized by a stiffness K and a viscosity B.  The PD controller 
generates a torque τ(t) to drive the plant (limb) based on the error between the decoded 
position and the actual position feedback.  B.  In contrast, a kinetic decoder generates a torque 
τ(t) directly from the neuronal activity. The torque decoder can be augmented by delayed 
information about limb state (red pathway) C.  In A and B, visual feedback regarding limb 
state allows the subject to control the device.  Ultimately, we seek to provide proprioceptive 
feedback about limb state through microstimulation of the somatosensory cortex. 



  

one second into the 
past in order to 
predict (decode) 
joint torque or 
Cartesian hand 
position or velocity. 
 Fig. 2 shows 
the reconstructed 
shoulder torque for 
a single trial that 
was not part of the 
data set used to 
train the decoder.  
The torque 
estimated from the 
limb inverse 
dynamics equations 
(black trace) was 
compared to the 
torque reconstructed from M1 discharge (blue trace).   In 
general, the accuracy of offline torque reconstruction was 
nearly equal to that of Cartesian hand position and velocity 
reconstruction [10].  This result is perhaps not surprising 
given the relationship of these variables through the 
equations of motion and limb kinematics.  However, it is 
important to note that the relation between torque and 
motion is nonlinear and that joint torque has a more complex 
temporal structure.   
 We augmented the torque decoder with four additional 
inputs: the position and velocity of shoulder and elbow joints 
100 ms prior to the prediction (Fig. 1B; red pathway).  This 
decoder (red trace in Fig. 2) performed substantially better 
than the unaugmented decoder (blue trace in Fig. 2).  
Performance was a function of delay, and was maximal at 
the 100 ms delay [10].  Note that in this particular analysis, 
the limb state information corresponded to the monkey’s 
actual limb movements; such information would not be 
available in a realistic real-time implementation.   

  The use of decoded torque in the direct, online control 
of an exoskeleton or prosthetic arm is fundamentally 
different from the use of decoded position.  Errors in 
decoded position at any given time are independent of 
position errors made in the past.  However, errors in decoded 
torque can accumulate in time and lead to substantial drift in 
the “intended” position of the limb.  A key question is 
whether this drift occurs within a behavioral time scale that 
allows for correction by the subject.   
 Fig. 3 shows offline decoding of position and velocity 
signals during a single trial using several decoding 
approaches.  Panels A and B show the actual shoulder 
position and velocity (black traces).   The state of a 
simulated limb was initialized to the true state of the 
monkey’s limb at time t=0. In an actual implementation, this 
would correspond to the subject’s feedback guided 
correction of limb position. As anticipated, when the 
simulated limb was driven by the decoded torque, small 
errors in decoded torque accumulated over time and caused 
the simulated state to diverge from the true state after several 
hundred milliseconds (blue traces). 
 Panels A and B also show the evolution of the simulated 
limb when driven by the augmented torque decoder that 
incorporates information about limb state (red traces).  
Unlike the example in Fig. 2, the position and velocity 
signals used by this decoder represented the delayed state of 
the simulated limb, a signal that would be available in a 
realistic setting. The incorporation of these signals 
constrained the long-term drift of the torque decoder and 
achieved position tracking performance comparable to that 
obtained from the direct estimation of joint position (green 
trace).   
 Figure 2C shows a log-log plot of the mean tracking 
error in shoulder position averaged over a set of 720 trials as 
a function of the time elapsed from the start of the trial.   As 
in panels A and B, the state of the simulated limb was set to 
ground truth at time t=0.  Mean and standard deviation of the 
error of the position decoder are constant (green).  The mean 
error of the torque decoder (blue) was smaller than the mean 
error of the position decoder until 400 ms after the beginning 
of the trial.  This time scale suggests that the rate of drift is 
well within the range that can be corrected even with 
relatively slow visual feedback.  Note that the position error 
of the torque decoder augmented with simulated position 
and velocity feedback (red) did not increase significantly 
beyond that of the position decoder.  
 We believe that the improvement in performance shown 
by the augmented torque decoder over the original torque 
decoder is due to a combination of factors. The 
incorporation of position and velocity information allows the 
augmented decoder to learn a strategy that resembles a PD 
controller, which can correct position and velocity errors. At 
the same time, because the decoder extracts torque 
information directly from the neural signals, it has the ability 
to combine kinematic information with information about 
the dynamics of the task.  
 These results show that under torque control, decoding 
errors accumulate slowly enough that the subject would have 
sufficient time to use visual feedback to correct the errors.  

 
 
Fig. 2.  Actual shoulder torque estimated from 
inverse dynamics (black trace) is compared to 
the torque decoded from M1 activity (blue 
trace). An improved torque reconstruction (red 
trace) was obtained by augmenting the decoder 
with delayed information about the actual joint 
positions and velocities. 

 
 
Fig. 3. Reconstruction of shoulder position (A) and velocity (B) based on 
kinematic and kinetic decoders. Reconstructions are shown as a function of 
time during a single trial. Each panel shows actual state variables (black), 
reconstructions based on position decoding of M1 activity (green), 
reconstructions based on torque decoding acting on a simulated limb model 
(blue), and reconstructions based on augmented torque decoding that 
incorporates delayed information about the simulated joint position and 
velocity, acting on the same limb model (red).  C.  Log-log plot of mean 
shoulder position error and its standard deviation as a function of time. In 
each case, the results of 720 trials are aligned at t=0 and averaged. Position 
decoder (green), torque decoder (blue), and augmented torque decoder (red).  



  

This suggests that online control by a kinetic torque decoder 
is feasible, and may offer advantages over simple kinematic 
decoding approaches under more complex and realistic 
conditions.  We are currently evaluating the online 
performance of kinetic decoders. 

II. REPRESENTATION OF LIMB IN SOMATOSENSORY CORTEX 
 Existing efferent BMIs rely on visual feedback to guide 
movements and correct errors, functions normally dependent 
on the proprioceptive system and mediated by the fastest 
conducting nerves in the body.  Patients suffering from loss 
of proprioception can move by relying on vision of their 
limbs, but their movements are typically slow, poorly 
coordinated, and require great concentration [11, 12]. We are 
pursuing the possibility of providing information about limb 
state to the subject via an afferent interface that operates in 
parallel with the efferent interface (Fig. 1C).  The ultimate 
goal is to provide feedback about limb state by modulating 
the intensity of stimulation at one or more electrodes within 
primary somatosensory cortex (S1). Stimulus intensity 
would be determined by the state of the controlled limb 
transformed by an expression relating normal limb state to 
the discharge of S1 neurons. Previously we demonstrated 
that a monkey could perceive electrical stimulation of 
proprioceptive cortex (S1, area 3a) and discriminate between 
stimulation at different frequencies [13].  In addition to our 
own work, several other groups have demonstrated that a 
monkey can perceive stimulation provided through 
electrodes in S1 [14, 15], even, in one case, through the 
activation of single cells [16].  
 In order to characterize the patterns of neural activity in 
S1, we have used chronically implanted multielectrode 
arrays to record datasets containing 41 cells from one 
monkey (A) and 50 cells from another monkey (M) during 
the random target pursuit task described above.  Of these 91 
cells, 57 showed firing rate modulation related to the speed 
and direction of hand movement.  We were able to 
reconstruct limb state from this ensemble activity using 
linear decoders similar to those used for the decoding of M1 

activity. Fig. 4A shows an example of velocity 
reconstruction along the x-axis. The linear filters used for 
extracting limb state information from S1 activity include 
lags of ±500 ms in order to include information from the 
neural discharge that lagged as well as led movement.  
Despite differences in the quality of reconstruction accuracy 
between the two monkeys (Fig. 4B), the greatest accuracy 
was for velocity and position reconstruction, comparable to 
that achieved when decoding position or velocity from M1 
activity.  
 An alternative characterization of the information about 
limb state contained in S1 neural discharge follows from 
computing the mutual information between the discharge of 
each cell and the speed of hand movement. For the cell 
shown in Fig. 5A, the peak of mutual information is at -80 
ms; this delay from limb state to S1 activity is expected from 
proprioceptive cells.  The amount of velocity related 
information varied considerably across the recorded cells 
(Fig. 5B), but it should be noted that good kinematic 
reconstructions (as in Fig. 4) were not the result of only a 
few highly informative cells. Among all the S1, area 2 cells 
with significant (peak > 3 times noise) mutual information 
with the speed of hand motion, roughly half peaked at a 
negative time lag. The activity of cells whose mutual 
information peaked at positive time lags conveys 
information about future hand speeds. This effect could 
result from efference 
copy from motor 
structures, or from 
tuning to force or 
acceleration, both of 
which lead velocity. 
 In the random 
target pursuit task, it 
is not generally 
possible to identify 
the starting time of 
individual reaches, or 
to average over 
reaches in a specific 
direction. The 
advantage of this 
task is that it 

 
 
Fig. 4.  A. Actual (black) and reconstructed (red) horizontal component of 
hand velocity as a function of time for an independent test sample.  B.  
Fraction of accounted variance for X and Y components of position (P), 
velocity (V), and acceleration (A). Results are shown for two monkeys: A 
and M. Bars show mean +/- standard deviation for ten-fold cross-validated 
reconstructions: the data is divided into ten time segments or “folds”, nine 
are used to fit the model, and the tenth is used to evaluate the quality of 
the model in cross validation.  The process is then repeated ten times, 
using each fold as the test case. 

 
 
Fig. 5.  A.  Mutual information between cell activity and hand velocity for 
a single cell from monkey M (S1, area 2; top arrow in panel B). B.  
Empirical distribution of maximal mutual information versus the time lag 
of the peak for the 57 cells from both monkeys that showed firing rate 
modulation related to the speed and direction of hand movement. Arrows 
indicate cells shown in Fig. 7. 

 
 
 Fig. 6.  Tuning curve of speed sensitivity 
for a single cell recorded from monkey A 
during the random target pursuit task. Most 
of the task-modulated cells from both 
monkeys had velocity-related discharge 
whose direction dependence was well fit by 
a sinusoid. 
 



  

decorrelates position from its time derivatives; the 
disadvantage is that the computation of tuning curves is 
more complicated than for the more common center-out 
task. The time lag associated with the mutual information 
peak is used to pair up neural discharge with the projection 
of hand velocity onto any arbitrary axis, and thus relate the 
amount of discharge to speed for any direction of movement. 
A tuning curve can be computed by projecting along 
different axes (Fig. 6).  Those recorded neurons that showed 
a significant peak in mutual information with hand velocity 
were also strongly modulated by both speed and direction of 
movement. The discharge of many cells was also modulated 
by position or acceleration, although the amplitude of 
modulation tended to be quite small. 
 The velocity modulation of the discharge reflected in 
the tuning curves suggests a simple model:  
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The firing rate λ is the sum of a baseline rate m, a cosine 
velocity term of amplitude k, where θ is the direction of 
movement and θp is the cell’s preferred direction, and a 
direction independent speed term of amplitude s.  
 This simple cosine form provided a good description of 
the directional dependence of the discharge of many cells. 
The ability of this firing rate model to describe the observed 
discharge is illustrated in Fig. 7 for two cells, one from each 
monkey. Over the population of recorded cells, preferred 
directions exhibited a bimodal distribution, favoring those 
directions aligned with the monkey’s forearm.  
 This relatively simple model of cell discharge could be 
used as the basis to stimulate S1 so as to mimic 
proprioceptive input from limb. It is important to note that 
this is only one possible model for conveying limb state 
information via S1 stimulation.  More complex models, in 
which stimulus intensity is controlled by specific 
combinations of position and velocity, can be introduced if 
indicated by further analysis of the discharge data. Of course 
it must also be recognized that a stimulus train that perfectly 
matches the state-related activity modulation of a neuron 
will not lead to entirely normal neuronal discharge.  The 
relation between stimulation and activation is unlikely to be 
linear.  In any case, the stimulation will result in an 
abnormal, near synchronous activation of many cells in the 
vicinity of the electrode.  It may be possible to monitor the 
resultant discharge of other neighboring cells as an 
indication of the effect of the stimulation.  The nature of the 
evoked behavior of the monkey will serve as the most 
important indication of the efficacy of the stimulation. 
Finally, as in the efferent half of the bi-directional interface, 
we anticipate the need to rely on the brain’s plasticity to 
adapt to the imperfect electrical stimulation.   

III. CONCLUSION 
 Upper limb prostheses have gone through tremendous 
evolution in the past few decades, as it has been possible to 
replace mechanical control cables with modern electronics 
and motors. It is now routine to operate a 2 or 3 degrees of 

freedom prosthesis by sensing myoelectric signals from 
remaining proximal muscles through surface electrodes built 
into the socket of the device. However, despite the 
availability of increasingly complex multiarticulate arm and 
hand prostheses, many patients choose the traditional 
mechanically actuated prostheses, which provide a fairly 
natural feedback and simplify interactions with external 
objects. 
 The work reported here addresses two important aspects 
that need to be incorporated to the design of Brain Machine 
Interfaces in order to overcome these limitations. One is the 
possibility of controlling both force and position by utilizing 
information about both movement trajectory and the 
underlying muscle activity and forces provided by patterns 
of neural activity recorded in primary motor cortex. An 
improved efferent interface with the ability to control force 
in addition to position will allow the subjects to interact with 
an environment characterized by complex and changing 
dynamics.  The second component is the incorporation of 
proprioceptive feedback through electrical stimulation in 
primary somatosensory cortex.  An afferent mechanism for 
providing fast and effective proprioceptive feedback will 
reduce reliance on visual feedback and allow the subjects to 
experience percepts associated with natural movement. 
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