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Abstract— When grasping an object, a robot must identify
the available forms of interaction with that object. Each of
these forms of interaction, a grasp affordance, describes one
canonical option for placing the hand and fingers with respect
to the object as an agent prepares to grasp it. The affordance
does not represent a single hand posture, but an entire manifold
within a space that describes hand position/orientation and
finger configuration. Our challenges are 1) how to represent
this manifold in as compact a manner as possible, and 2) how to
extract these affordance representations given a set of example
grasps as demonstrated by a human teacher.

In this paper, we approach the problem of representation
by capturing all instances of a canonical grasp using a joint
probability density function (PDF) in a hand posture space.
The PDF captures in an object-centered coordinate frame a
combination of hand orientation, tool point position and offset
from hand to tool point. The set of canonical grasps is then
represented using a mixture distribution model. We address
the problem of learning the model parameters from a set of
example grasps using a clustering approach based on expec-
tation maximization. Our experiments show that the learned
canonical grasps correspond to the functionally different ways
that the object may be grasped. In addition, by including
the tool point/hand relationship within the learned model, the
approach is capable of separating different grasp types, even
when the different types involve similar hand postures.

I. INTRODUCTION

Manipulating one’s world in very flexible ways is a skill

that is shared only by a small number of species. Humans are

particularly skilled at applying their manipulation abilities

in novel situations using a range of effectors, from hands

and other parts of the body, to tools. How can robots

come to organize and learn knowledge representations for

solving grasping and manipulation problems in unstructured

environments? J. J. Gibson [8], [9] suggests that these repre-

sentations should be partitioned into what can be done with

particular objects and why an object should be manipulated in

a certain way. The first of these, which Gibson terms object

affordances, captures the details of what can be done with

the object by the agent. The latter captures information about

how individual manipulation skills are to be put together in

order to solve a specific task. The task-neutral affordance

representation is important in that it can provide an agent

with a menu of actions or activities that are possible with

a given object – whether the current task is well known or

not.
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In this paper, we examine the grasp affordance question.

For a given object, we would like to compactly represent

the feasible set of grasps that can be used with that object.

These representations should be sufficient to enable a robot

to execute the grasp, recognize the use of the grasp as made

by other agents and even form a plan for how the grasp could

subsequently be used in a task. For example, a cup might be

grasped somewhere around its circumference using a palmar

type grasp, or a cereal box might be grasped along its thin

side using the finger tips in opposition to the thumb.

Shape primitive approaches address this problem of associ-

ating objects with possible grasps by decomposing an object

into a collection of volumetric primitives such as cylinders,

rectangular prisms, spheres and cones (e.g., [1], [11]). Each

primitive is associated a priori with a set of possible hand

postures that can be used to grasp the component. Candidate

grasps are then pruned based on a variety geometric and

grasp quality constraints.

Visual feature approaches directly map identifiable visual

features to particular hand postures (e.g., [10], [12]). Coelho

et al. [3] and Piater et al. [13] explicitly learn the relation-

ship between specific visual features and successful hand

postures. In their work, the hand postures are discovered

through a haptic exploration process. Hence, the resulting

representations are rooted in the agent’s own experiences

with the objects.

Manifold approaches describe the feasible set of grasps in

terms of a set of points within a space that captures hand

position/orientation relative to the object and finger config-

uration (e.g., [14], [6]). De Granville et al. describe these

manifolds using a mixture probability density function ap-

proach, in which each PDF is a joint PDF over hand position,

orientation, and (in some cases) finger configuration [5], [4].

Because a nontrivial degree of hand position variation can

be seen with small changes in finger configuration, but with

little to no change in contact location, the joint PDF captures

the position of a “tool point” rather than the hand explicitly.

The tool point is assumed to be at a fixed offset from the

hand location, and roughly corresponds to the centroid of

the set of contacts. De Granville et al. have shown that the

parameters for an appropriate set of mixture distribution can

be learned from a large set of grasps demonstrated by a

human teacher, and that individual PDFs correspond roughly

to the functional ways that the object may be grasped.

While the approach of de Granville can work well in some

contexts, the relative position of the contacts and the hand

can vary dramatically depending on the choice of grasp.

For example, a cup might be grasped with fingertips in a

precision grasp or enclosed in a power grasp. In this paper,



we address this problem by allowing the relative position

of the tool point to be specified by each component PDF.

We show that the estimation of this relative position can

be performed as part of the expectation maximization (EM)

algorithm [7] that is used to estimate the mixture PDF

parameters. Furthermore, we show experimentally that by

adding these extra degrees of freedom to the models, the

learning algorithm is capable of separating different grasp

types, even when the different types involve similar hand

postures.

II. METHODS

The set of hand postures that correspond to feasible grasps

of a particular object can be described as a manifold in

hand posture and finger configuration space. Our challenges

are 1) to generally represent these manifolds in as compact

a manner as possible such that the representation makes

explicit the functionally different ways that an object can

be grasped and 2) to construct such a representation for a

specific object given a set of examples of grasping it.

Consider grasping a cylindrical object from the side using

a precision type grasp (e.g., as if to drink from a cup).

Fig. 1a shows such a grasp, where the location of the hand

is described in the object coordinate frame as Obx, and

the orientation of the hand is described as Ob
H R. Given all

possible approach directions, the set of hand positions forms

a ring around the object. The question is: how do we model

this set of solutions in as simple a manner as possible? One

possibility is to model the location of a “tool point” instead

of the hand location directly. In Fig. 1a, this tool point, Oby,

is modeled as a fixed translation from the hand, HS1. If

this translation (or offset) is selected appropriately, the set of

tool point locations that results from all possible approach

direction forms a compact set in Cartesian space at the center

of the object. In contrast, when the object is grasped using a

power (or palmar) grasp, the set of hand positions also forms

a ring around the object, but at a smaller radius (Fig. 1b). By

selecting an appropriately scaled translation, HS2, the set of

tool point positions also forms a compact set.

Because the tool point positions form a compact set, it

is convenient to describe this set using a Gaussian distri-

bution. We approach the general problem of representing

the set of hand configurations by using a joint probability

density function (PDF) over the tool point positions and hand

orientations (we do not explicitly treat finger configuration

in this paper). We capture multiple canonical grasps (e.g.,

the precision and power grasps of Fig. 1) using a mixture

model of the joint PDFs. Given a set of example grasps, we

can treat the learning problem as one of clustering in which

the parameters of the PDFs are learned at the same time as

individual samples are clustered into the component PDFs.

We employ expectation maximization (EM) to perform this

clustering process [7].

A. A PDF Representation of Grasp Affordances

Each demonstrated grasp posture i consists of the hand’s

position Obxi ∈ R
3 and rotation Ob

H Ri ∈ SO(3), both in

(a) (b)

Fig. 1. Precision (a) and power (b) grasps, for example, have different
offset vectors (HSj ) from the the hand (Obx) to the tool point (Oby). The
offset is expressed in the hand coordinate frame.

the coordinate frame of the object. Given a set of sample

postures representing valid grasps of the object, we desire

to cluster these samples using a weighted mixture model of

PDFs. The mixture PDF h, representing the likelihood of a

hand posture given that the agent is grasping the object, is

given by:

h(Obxi,
Ob
H Ri|Φ) =

M
∑

j=1

wjgj(
Obxi,

Ob
H Ri|θj), (1)

where Φ is the full set of parameters, M is the total number

of clusters, wj is the weight of cluster j, gj is the likelihood

of the posture given cluster j, and θj is the parameter set

of cluster j. Also,
∑M

j=1
wj = 1, where each wj can be

interpreted as being the probability of a sample falling within

cluster j.

Following de Granville et al., the PDF of each cluster is

described as a joint PDF in both position and orientation. We

assume that these two components are independent given the

cluster:

gj(
Obxi,

Ob
H Ri|θj) = p(Obxi,

Ob
H Ri|θpj)fj(

Ob
H Ri|θfj), (2)

where p(.) describes the position likelihood and fj(.) de-

scribes the likelihood of the orientation. The distribution

parameters are split into position and orientation components

θpj and θfj . Each fj is one of two possible distributions in

orientation space (and hence each is indexed by j).

The two types of distributions capture orientations in a

unit quaternion space [5], [4]. Dimroth-Watson distributions

are Gaussian-like in their shape and are described by a

“mean” rotation and a degree of allowable variation around

this mean. “Girdle” distributions assign maximum likelihood

to all rotations about some fixed, but arbitrary, axis. This

likelihood drops as rotation deviates from this set. We refer

the reader to de Granville et al. for more details [5], [4].

We model the distribution of tool point positions by a

multivariate Gaussian. However, we need to allow each

cluster to have a unique offset from the hand to the tool

point. Therefore,

p(Obxi,
Ob
H Ri|

Obµj , Vj ,
HSj) =

1

(2π)3/2|Vj |1/2
exp

(

−
1

2
δT
ijV

−1

j δij

)

, (3)



where Obµj ∈ R
3 is the tool point mean in the object’s

coordinate frame and Vj ∈ R
3×3 a covariance matrix,

HSj ∈ R
3 is the offset from hand to tool point in the hand’s

coordinate frame, and δij is the vector from the cluster mean

to the tool point sample:

δij = Ob
H Ri

HSj + Obxi −
Obµj . (4)

B. Parameter Estimation

Given N sample hand postures, we use expectation maxi-

mization (EM) to find the parameters for a set of clusters

defined by Eq. (1) and the probability αij that sample i
belongs to cluster j. The total number of clusters M is fixed

for each use of EM. More specifically, a certain number of

Dimroth-Watson and girdle clusters are specified in advance.

The EM approach selects parameters to maximize the

expected log-likelihood (ELL) of the joint event for all

samples i and hidden variables. ELL is given by:

ELL =

N
∑

i=1

M
∑

j=1

αij log
(

wjgj(
Obxi,

Ob
H R|θj)

)

, (5)

where
∑M

j=1
αij = 1 for each sample i.

Focusing on the offset parameter HSj for a particular

cluster, substituting Eq. (2) into the above and simplifying

yields:

max
HSj

ELL = max
HSj

N
∑

i=1

αijδ
T
ijV

−1δij . (6)

We find the maximum likelihood estimate for HSj by taking

the derivative of ELL with respect to HSj and setting to 0:

0 =

N
∑

i=1

αij
Ob
H RT

i V −1

j

(

Ob
H Ri

HSj + Obxi −
Obµj

)

,

which yields the solution:

H Ŝj =

(

N
∑

i=1

αij

(

Ob
H RT

i V −1

j
Ob
H Ri

)

)−1

N
∑

i=1

αij
Ob
H RT

i V −1

j (Obµj −
Obxi). (7)

Similar derivations exist for the other parameters. These

are roughly equivalent to standard maximum likelihood pa-

rameter estimates for the Gaussian distribution except that

the position of the hand is replaced with the position of the

tool point:

Obµ̂j =

∑N
i=1

αij

(

Ob
H Ri

HSj + Obxi

)

∑N
i=1

αij

, and (8)

V̂j =

∑N
i=1

αijδijδ
T
ij

∑N
i=1

αij

. (9)

Note that the update rules for some parameters (including the

offset) depend on the values of other parameters. We update

all distribution parameters in parallel.

The update rule for cluster weight is the same as for other

mixture-of-PDF approaches, and the rules for the orientation

component of each cluster are unchanged from prior work

by de Granville et al. [5].

C. Model Selection

EM is a gradient ascent method used here for maximizing

ELL in order to discover estimates for distribution parameters

and the probability of samples belonging to particular clus-

ters. For our domain, many local optima exist, with results

varying greatly depending on initial conditions. To address

this issue, we perform many attempts of EM from different

randomly-selected initial conditions. Rather than select the

best global result by highest ELL, we instead employ metrics

designed also to limit model complexity.

A metric that is very similar to ELL, but which purposely

avoids rewarding overlapping clusters, is the completed log

likelihood (CLL):

CLL =

N
∑

i=1

M
∑

j=1

α̂ij log
(

wjgj(
Obxi,

Ob
H Ri|θj)

)

, (10)

where α̂ij is 1 if cluster j is the highest likelihood cluster for

sample i and 0 otherwise. That is, due to α̂ij , each sample’s

likelihood counts only for its best-fitting cluster.

Furthermore, we explicitly want to punish mixture models

with excessive numbers of clusters. Fewer clusters means

a smaller number of identified grasps on which to apply

other algorithms. Therefore, to punish more complex mixture

models, we employ the Integrated Completed Likelihood

(ICL) metric [2]:

ICL = −2 CLL + ζν log(N), (11)

where ζ determines the magnitude of the complexity punish-

ment and ν is the number of degrees of freedom (parameters)

in the PDF model. By this measure, more complicated

distributions are punished more than simpler ones. In a sense,

each distribution has to pay for its complexity by providing

sufficient fit. Unlike CLL, lower ICL is better.

Of all EM attempts performed from different initial con-

ditions, the retained model is that with the best ICL as

calculated on a separate set of validation samples. Also, we

do not know a priori how many clusters are appropriate for

a given object. Following de Granville et al., we try mixture

models with different numbers of clusters and different

combinations of Dimroth-Watson and girdle distributions.

The model among the combinations with the best ICL on

a second validation data set is selected as the final solution

for the data set.

III. EXPERIMENTS

We evaluate the capabilities and performance of our al-

gorithm using a pair of objects (a hammer handle and a

spray bottle), each of which can be grasped in several ways.

In particular, we compare our algorithm with that of de

Granville et al., which assumes a fixed offset from the hand

coordinate frame to the tool point.

A. Data Collection

When demonstrating grasp postures, we need to measure

the hand position and orientation relative to the object. To

do this, we attached Polhemus FASTRAK sensors to each,

giving the position and orientation of each in the global



coordinate frame. From these, the relative measures can be

calculated. Typically, the teacher uses the non-instrumented

hand to hold the object to enable quick demonstration of

many grasp poses around the object. Also, for the fixed offset

experiments, we estimated the offset by taking a mean of

samples while directly handling the sensor using a variety

of grasp types.

For our experiments, we used ICL punishment factor

ζ = 4. In practice, this choice reduces model complexity

while not leading to excessively simplified and degenerate

solutions.

For each object, a human teacher demonstrated a certain

number of grasp postures (2000 for the hammer handle and

6000 for the spray bottle). We performed 30 independent

experiments with each data set. For each experiment, we

randomly subsampled from this total. Specifically, we chose

1000 training samples for EM, 250 different validation

samples for evaluating multiple EM attempts by ICL, 250

additional validation samples for comparing the results of

different numbers and types of clusters (again, by ICL),

and 250 independent test samples for the evaluation of the

resulting models by CLL.

In both experiments, every possible combination of

Dimroth-Watson and girdle clusters was attempted (up to

a limit of B clusters). For each combination of clusters, 60

attempts from different starting conditions were performed,

each with 20 EM steps. These numbers were chosen based

on exploratory experiments.

B. Performance Measures

Because our data set is an unlabeled set of example grasps,

there is no innate correct answer. Therefore, when assessing

experimental results, we are concerned with whether the

clusters match our expectations. That is, for each cluster

found, was it expected or extraneous? Further, were any

expected clusters missing? We are also interested in the

overall quality of fit of clusters to the test data. Therefore,

when comparing results here, we emphasize the following

measures:

• True positive rate (TPR) describes how many expected

clusters were found. TPR = TP/(TP + FN), where

TP is the number of true positive identifications (ex-

pected clusters found the in results) and FN is the

number of false negatives (expected but not found).

• Precision (PRC) describes how many resulting clusters

were expected. PRC = TP/(TP + FP ), where FP
is the number of false positive identifications (found

clusters that were not expected, often due to unwanted

splits of expected clusters).

• CLL measures the quality of fit for samples against the

learned model.

C. Hammer Handle

As a simple example for discovering grasp offset, we

demonstrated precision and power grasps around a hammer

handle. Similar handles or other rotationally symmetric grasp

options exist for various objects. Thus, this experiment

(a) (b) (c)

Fig. 2. Hammer handle (a) used for precision and power grasps. An
example of approximately expected results is shown from top (b) and side
(c). The point clouds show the measured hand positions. Offset from the
hand points are ellipsoids representing the 3D Gaussians that capture the
tool points for each cluster. The orientation component of each cluster is a
girdle distribution, as indicated by the visible rings. The inner ring is for
power grasps, and the outer ring is for precision grasps.

represents a fundamental case to test the basic applicability

of our method. Because of the clearly distinct offsets and

many different approach directions, we expected the use of

variable offsets to outperform the use of a fixed offset.

This data set included 2000 samples, 1000 for each grasp

type. We limited the maximum number of clusters to B = 5
for this experiment. An example of the expected results is

shown in Fig. 2. Specifically, true positives, false positives,

and false negatives (as defined earlier) are judged in relation

to these expected results.

Our proposed algorithm, with learned offsets, consistently

found at least one ring for each grasp type. One example

solution is shown in Fig. 4a, in which there is a clear sep-

aration between the clusters corresponding to the precision

(red) and power grasps (blue). In contrast, when the fixed

offset is used, the fit to the data is poor, as shown in Fig. 4b.

In particular, in order to represent the interior points, one

cluster (green) expands dramatically in the lateral directions.

This case was classified as a false positive because much of

the space supposedly available for the tool point would result

in a failed grasp.

Our new algorithm, with learned offsets, consistently

found at least one ring for each grasp type. In 29 of 30

experiments, the algorithm discocvered the expected solul-

tion of one inner and one outer ring. Only one case resulted

in three rings, with the inner power grasp split into two

clusters, one above the other. Specific results for TPR, PRC,

and CLL are shown in Fig. 3. In contrast, the fixed offset

approach consistently performed poorly on the data set. In

some cases, the algorithm identified only a single cluster with

a wide variance. Mean CLL for using learned offsets was

about 15% greater than for using a fixed offset. In addition,

the TPR and PRC scores were more than twice that of the

fixed offset case. According to a two-sample t-test, all three

of these differences are statistically significant (p < 0.0001).

D. Spray Bottle

To cover a more complicated example, though still with

different expected offsets, we demonstrated grasps around a

spray bottle as seen in Fig. 5. The grasps include a power

grasp of the neck with the finger on the trigger (shown in

magenta) as well as a precision grasp of the neck (red). In

addition to these two grasps, we also demonstrated grasping



(a) (b)

Fig. 4. Representative examples of hammer handle clusters for variable offset (a) and fixed offset (b). The wider Gaussian distribution in (b) was counted
as a false positive.
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Fig. 3. Detailed results for key measures for hammer handle (HH) and
spray bottle (SB) experiments. Here, Var indicates variable offset, and Fixed

indicates fixed offset. Error bars show standard deviation.

the top from both sides (gray and brown) including some

amount of putting fingertips under the head and also grasping

the base from both the front and back (blue and green).

Because of the different grasp types, we expected the use of

variable offsets to outperform the use of a fixed offset despite

the added complexity. In all, we demonstrated 6 grasps. In

the full data set, we again had 1000 samples for each grasp.

We allowed a maximum of B = 10 clusters.

Fig. 6 shows typical solutions for both the learned and

fixed offset approaches. Of particular note, the fixed offset

case more often required two clusters (magenta and orange)

in order to capture the case of holding the spray bottle with

the finger on the trigger. Note also that the center of these

clusters is offset by a few centimeters (across all trials, mean

x = −4.3cm for fixed as opposed to mean x = −2.9cm for

learned). Both approaches frequently allocated two clusters

to one of the grasps from above (shown as gray). This

happens because of the wide spatial distribution of the hand

locations for this grasp.

Overall, the use of fixed offsets did not perform as

poorly as for the hammer handle, despite different offsets

having been demonstrated. The use of variable offsets usually

resulted in 5 true positives, while using fixed offset usually

(a) (b)

Fig. 5. Spray bottle (a) and example of approximately expected results
(b). As for the expected hammer handle results, this result shows the
basis for judgment of true positives, false positives, and false negatives.
In this case, all expected clusters use a Dimroth-Watson distribution for
their orientation component. The lines from hand point clouds to tool point
Gaussian centroids show the offset for each cluster.

resulted in finding all 6, but with an increased number of

false positives (as reflected in the PRC score). The mean

CLL for the fixed offset case was about 3.5% more than that

for for the variable offset, a difference that was significantly

different (two-sample t-test, p < 0.0001). However, the use

of variable offsets had a PRC score of about 7.5% more

than that for use of a fixed offset, again with a statistically

significant difference (p < 0.01)

The small difference in performance between the two

algorithms is due largely to the fact that only Dimroth-

Watson (single orientation) distributions were necessary to

explain the data. Because there is very little variation in

orientation between the samples in each cluster, there is

little difference in the variance of the spatial distribution

between the hand and tool point positions. In contrast, with

the hammer handle case, because the variation in rotation

is substantial (i.e., from all possible approach directions),

the variance in the spatial distribution between hand and

tool point positions is very different. Consequently, we see a

significant advantage to the proposed approach for the handle

case.



Fig. 6. Representative examples of
spray bottle clusters for variable off-
set (a) and fixed offset (b). The vari-
able offset results shown here are con-
sidered to have 5 true positives and
1 false positive (the additional grasp
from above). The fixed offset results
shown here are considered to have 6
true positives and 1 false positive (the
additional grasp for trigger use).

(a) (b)

IV. DISCUSSION

In this paper, we proposed an approach that allows an

agent to observe a set of example grasps of an object made

by a teacher and to construct a compact representation of

the canonical grasps that may be made with the object.

The object models are represented as mixture probability

distributions defined in a hand posture space. In particular,

by including a model parameter that describes the offset

from hand to a center tool point, the algorithm is capable of

distinguishing some functionally different grasps that involve

different sets of contacts, even when there is not a dramatic

difference in the pose of the hand across these grasps.

In using this approach in a complete system, several

additional steps are necessary. First, although the learned af-

fordance representation maps directly onto a reach controller

that would enable a robot to move its hand into proximity

with the object, we anticipate that haptic feedback would

be used to further refine the grasp (e.g., [3]). Second, the

proposed method is not limited to using data derived from

a human teacher. Instead, a robot could produce experience

that is specific to its own morphology.

Third, we are interested in making the connection between

the visual representation of an object and these learned grasp

affordances. Such a connection could be made in one of

two ways. A learned visual representation could be used

to recognize the identity and pose of a specific object.

The pose would provide a coordinate frame onto which to

hang the affordance representation, which, in turn, could

provide reach goal locations. Alternatively, the learned visual

representations could recognize more general components of

objects. Each of these components would then be associated

with their own affordance representation. Such an approach

would enable a robot to approach a novel object, recognize

its components and immediately have access to a set of

candidate reach/grasp actions.
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