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Null-Space Grasp Control: Theory and Experiments
Robert Platt, Jr., Andrew H. Fagg, and Roderic A. Grupen

Abstract—A key problem in robot grasping is that of positioning
the manipulator contacts so that an object can be grasped. In un-
structured environments, contact positions are typically planned
based on range or visual measurements that are used to recon-
struct object geometry. However, because it is difficult to measure
the complete object geometry precisely in common grasp scenar-
ios, it is useful to employ additional techniques to adjust or refine
the grasp using local information only. In particular, grasp con-
trol techniques can be used to improve a grasp by adjusting the
contact configuration after making initial contact with an object
by using measurements of local object geometry at the contacts.
This paper proposes three variations on null-space grasp control:
an approach that combines multiple grasp objectives to improve
a grasp. Two of these variations are theoretically demonstrated to
converge to force-closure configurations for arbitrary convex ob-
jects when grasping with two contacts. All variations are found to
converge in simulation. Robot-grasping experiments are reported
that show the approach to be useful in practice.

Index Terms—Cooperative manipulators, dexterous manipula-
tion, force and tactile sensing, grasping, humanoid robots.

I. INTRODUCTION

AKEY problem in robot grasping is positioning the contacts
so that the necessary grasping forces can be applied. At

each contact, the forces that can be applied depend on the lo-
cal surface characteristics, including object surface normal and
curvature. In unstructured environments, visual occlusions and
sensor error make it difficult for a robot to measure the exact
surface geometry of an object to be grasped before making con-
tact. Therefore, the contacts must be placed on the object surface
based on predictions that may be inaccurate. These predictions
must ultimately be verified by force feedback when the robot
actually makes contact.

When the predictions are wrong, it is advantageous to be able
to adjust the manipulator configuration based on the sensed con-
tact forces. Few approaches currently exist for accomplishing
this step. After the contacts are placed on the object, how does
the robot determine whether the grasp is good enough? When
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it is not, what mechanism can be used to displace the contacts
toward better grasp locations? These two questions are the fo-
cus of this paper. We describe key features of null-space grasp
control: a nonlinear control strategy that synthesizes a grasp
by using local measurements at the contacts to adjust contact
configuration. The approach is predicated on a mechanism for
measuring object surface normal in the neighborhood of each
contact. Starting from an arbitrary configuration of the contacts
on (or near) the object surface, measurements of the local object
surface normals at the contacts are used to calculate a contact
displacement on the object surface. Our experimental work uses
six-axis load cells to measure the object surface normal while
touching the object lightly. A contact displacement control sys-
tem realizes the desired displacement by sliding the contacts
over the object surface lightly.

We build upon force residual and moment residual controllers,
which was first proposed by Coelho and Grupen [1]. Coelho
proved a convergence result for regular convex prismatic ob-
jects when the two controllers executed in a particular sequence
and showed experimental results on a robot manipulator [2].
This paper extends the work of Coelho. First, we link the grasp
controller to unit frictionless equilibrium: a special case of a
force-closure grasp. Second, we propose the null space approach
to grasp control where force and moment residual controllers ex-
ecute simultaneously. The following three versions of the null
space control law are proposed that tradeoff sensory require-
ments with speed of convergence:

1) the exact null space grasp controller;
2) the approximate null space grasp controller;
3) the switching grasp controller.
Convergence proofs are provided for the exact controller and

the switching controller. All three variations are compared in
simulation. Finally, robot experiments are presented that demon-
strate the approach to be a practical mechanism for using local
contact feedback to validate and improve robot grasps.

II. RELATED WORK

A significant body of grasping research considers the prob-
lem of grasping in isolation from sensing considerations. This
research typically begins with the assumption that the object ge-
ometry is known and that it is possible to sense object pose. One
research direction identifies sufficient geometric conditions for
a good grasp. For example, Nguyen proposed to search the space
of two-contact configurations for those where a line connecting
the two contacts lies inside friction cones associated with both
contacts. This idea is the basis for algorithms that calculate two-
contact force-closure contact configurations for 2-D and 3-D
polyhedral objects [3], [4] and curved objects [5]–[7]. This type
of approach was extended to four-fingered grasps of polyhedral
objects by Sudsang and Ponce, who characterized four classes of
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four-contact grasp configurations [8]. Given the constraints as-
sociated with each grasp class, force-closure grasps were found
using optimization techniques. These ideas can be extended to
in-hand manipulation by using the kinematics of rolling contact
to move between different geometrically characterized grasp
configurations [9]–[11].

Another approach to grasp planning finds grasps that opti-
mize measures of grasp quality. As with the aforementioned
planning approaches, these also generally ignore the sensing
issue. For example, Li and Sastry use linear optimization tech-
niques to find contact configurations that optimize quality mea-
sures associated with the eigenvalues of the grasp map (relation-
ship between contact loads and object loads) [12]. Kirkpatrick
et al. and Ferrari and Canny propose to optimize a quality mea-
sure proportional to the radius of the largest sphere that can
be inscribed in the convex hull of contact wrenches [13], [14].
Mirtich and Canny propose efficient planning algorithms for
two and three contacts based on related quality measures [15].

In contrast to the aforementioned, a significant body of work
combines sensing and planning in a two-step process, where
sensing occurs completely in advance of planning and control.
For example, several researchers estimate the silhouette of an ob-
ject to be grasped from different camera images, and use the re-
sulting spatial silhouette as input to a grasp-planning algorithm.
For the purposes of planning, the silhouette may be approxi-
mated by piecewise segments [16]–[18], smooth curves [19], or
convex polyhedra [20]. In this context, some researchers also
consider the feasibility of various grasp configurations in terms
of manipulator kinematics [21], [22].

The application of tactile sensing to grasping, in this paper,
is related to prior work that uses tactile information to estimate
aspects of object shape and relative pose. Early work by Allen
and Michelman modeled the surface of an unknown object as a
superquadric using visual and tactile measurements [23]. Jia and
Erdmann estimated contact position and object twist using an
observer that was theoretically and empirically demonstrated to
converge [24]. Haidacher and Hirzinger experimentally demon-
strated an object localization method that matches tactile mea-
surements to a best-fit object configuration [25]. Several re-
searchers have solved a similar problem by applying statistical
methods [26]–[28].

It is notable that all the work described before explicitly or
implicitly divides grasp synthesis and manipulation into tem-
porally separate perceptual and control processes. In contrast,
the null-space grasp-control method characterized in this paper
uses measurements continuously throughout the grasp synthe-
sis process to adjust manipulator contact configuration. Our
approach is more closely related to the work of Son et al.,
who combine visual and tactile “control primitives” to grasp a
rod using a two-fingered gripper [29]. Using continuous tactile
feedback, a gripper is reoriented about a single axis so that it
becomes better aligned with an object for grasping. Similarly,
Yoshimi and Allen visually estimate the relative configuration
of the object and manipulator and servo into a desired grasp
configuration [30]. Another example of this type of approach
are the provably correct reactive-grasping algorithms proposed
by Teichmann and Mishra. These algorithms displace two or

three manipulator contacts into a grasp configuration based on
continually updated tactile feedback [31].

III. GRASP OBJECTIVE FUNCTIONS AND FORCE CLOSURE

The key idea of grasp control is to displace the contacts from
an initial configuration on the object surface into a grasp con-
figuration using measurements of local object geometry at the
contacts. The grasp controller reaches grasp configurations by
following the gradients of two objective functions: the unit fric-
tionless force residual and the unit frictionless moment residual.
These two objective functions lead the system into unit friction-
less equilibrium configurations. This section introduces the no-
tion of unit frictionless equilibrium as well as the two objective
functions and relates them to force closure, which is a common
quantitative measure of a grasp.

A. Grasp Objective Functions

For the purposes of the following development, it is useful
to introduce the notion of wrench. A wrench, w = (fT ,mT )T ,
is a screw that represents a combined force f and moment m.
Assume that all wrenches are expressed in a reference frame
attached to the object located at the centroid of the contacts. A
system of k contacts touching an object is in equilibrium when
the sum of the wrenches applied to the object at each contact
(the contact wrenches) is zero, i.e.,

k∑
i=1

wi = 0 (1)

where wi is the ith contact wrench. We define unit friction-
less equilibrium to be the special case of equilibrium where all
contacts apply unit forces normal to the object surface.

Definition 1: A system of contacts is in unit frictionless equi-
librium when it is in equilibrium and the contact wrenches
w1 , . . . ,wk satisfy

wi =
(

n̂i

ri × n̂i

)

where n̂i and ri are the unit object surface normal and the
position of the ith contact, respectively.

When a two-contact system is in unit frictionless equilibrium,
the contacts are in an antipodal configuration (parallel and in-
tersecting contact normals). When a three-contact system is in
unit frictionless equilibrium, the contact normals lie in a plane
and intersect at a single point.

The proposed grasp control approach reaches unit frictionless
equilibrium by descending the unit frictionless force residual
and moment residual error functions. The squared unit friction-
less force residual is defined as

εf =
1
2
fT f , f =

k∑
i=1

n̂i . (2)

When the unit frictionless force residual is zero, all of the unit
normals are balanced. Such a configuration will be known as
unit frictionless force equilibrium. The squared unit frictionless
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moment residual is defined as

εm =
1
2
mT m, m =

k∑
i=1

ri × n̂i . (3)

When the unit frictionless moment residual is zero, the system
is in unit frictionless moment equilibrium.

B. Relationship to Force Closure

Force closure is a way of quantifying the term “grasp.” A
force-closure contact configuration can resist arbitrary loads
applied to the object (from gravity or other sources) by applying
appropriate combinations of contact wrenches [32]. For two or
more contacts, unit frictionless equilibrium is a special case of
force closure for any nonzero coefficient of coulomb friction.
This was demonstrated for three or more contacts by Ponce
et al. [33] and can be extended to two contacts if it is assumed
that the contacts are able to apply frictional torsional loads about
the contact normals (this is typically known as the “soft contact”
assumption [34]).

Lemma 1: When at least one contact can apply frictional
torsional loads about the contact normal as well as tangential
frictional forces, then a sufficient condition for 3-D two-finger
force closure is nonmarginal equilibrium.

A contact configuration is in nonmarginal equilibrium when
it is in equilibrium and all contact wrenches are strictly within
(not on the edge of) their respective friction cones. Since unit
frictionless equilibrium grasps apply forces only along the sur-
face normals (at the center of the associated friction cone), these
grasps must therefore be force closure when the contacts are able
to apply positive tangential frictional forces. Lemma 1 is proven
in the Appendix.

IV. FORCE AND MOMENT RESIDUAL CONTROLLERS

Grasp control synthesizes grasps by displacing contacts over
the object surface into grasp configurations using local contact
feedback. This section describes the contact displacement mech-
anism. It also describes the force and moment residual control
laws that are combined by null space grasp control.

A. Mechanism for Contact Displacement

Grasp control is predicated on a mechanism for measuring
the object surface normal near the contacts while displacing
them over the object surface. This can be accomplished in two
ways: 1) by touching the object lightly to make the necessary
measurements using force sensors without disturbing the object
and 2) by placing the contacts close enough to the object to be
able to detect surface normal using noncontact sensors.

Our experimental work takes the first approach by using six-
axis load cells mounted in the robot fingertips to measure object
surface normal and contact forces while touching the object (see
Section VII for hardware details). A simple torque control law
is used to touch the object lightly, i.e.,

q̈∗ = Kp(τ ∗ − τ) − Kdq̇

where q̈∗ is a commanded finger acceleration calculated by a
proportional term on finger joint torque error, i.e., τ ∗ − τ , and
a damping term on actual joint velocity, i.e., q̇ [35]. The joint
torque τ is calculated using force measurements from the fin-
gertip load cell. While touching the object with the load cell,
contact wrench measurements coupled with knowledge of the
convex contact geometry are used to calculate the object surface
normal [36].

A potential problem with contact displacement while touch-
ing is that the process causes small unintended object displace-
ments. Although this was not a significant problem in our experi-
mental work (see Section VII), null-space grasp control can also
be implemented without touching the object by using noncon-
tact proximity sensors. For example, Teichmann and Mishra’s
implementation of reactive grasping using a parallel jaw gripper
uses optical proximity sensors to measure local object geometry
without touching in the context of a similar grasp displacement
strategy [37]. Similarly, Walker and Salisbury’s probabilistic
manipulation experiment table (PMET) manipulator uses opti-
cal proximity sensors to measure distance to the object surface
without touching. Object surface normal is calculated by differ-
entiating a series of distance measurements [38]. Instead of op-
tical sensing, laser range sensors might also be used to measure
local object surface curvature when the scale of manipulation is
large enough. Finally, in the future, new technologies, such as
electric-field-pretouch sensing, may be used in ways similar to
the previously mentioned technologies [39].

B. Force Residual Controller

Assume that the controller interacts with a second-order con-
tinuous spatial object with two or three contacts. The force resid-
ual controller follows the negative gradient of a unit-curvature
approximation of the unit frictionless force residual (2). Let the
surface of the object be parameterized by orthogonal parameter
curves u and v. Let ri(u, v) describe the 3-D Cartesian position
of the ith contact as a function of the parameter curves. Let∇uri

and ∇vri denote ∂ri/∂ui and ∂ri/∂vi , which are the tangents
to the u and v parameter curves at contact i. Define the sense
of the curves such that (∇uri ,∇vri , n̂i) forms a right-hand
orthonormal coordinate frame at each contact.

The gradient of the squared unit frictionless force residual (2)
with respect to these surface coordinates is

∂εf

∂u
= fT Jf (4)

where u = (u1 , . . . ,uk ) is a vector describing the surface coor-
dinates of k contacts, f is the unit frictionless force residual (2),
and Jf = ∂f/∂u is the unit frictionless force residual Jacobian.

Jf may be decomposed into k partial derivatives, i.e.,

Jf =
(

∂f
∂u1

, . . . ,
∂f

∂uk

)
.

The ith partial derivative can be expressed as follows:

∂f
∂ui

=
∂n̂i

∂ui

= (∇uri ,∇vri) Ki
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Fig. 1. Force residual controller calculates the force residual gradient by as-
suming that each contact normal will change as if the contacts were moving
on a sphere tangent to the object at the contact point. At each iteration of the
controller, the gradient is recomputed using the spherical assumption.

where Ki is a 2 × 2 symmetric matrix of surface curvatures for
contact i. Therefore, the unit frictionless force residual Jacobian
is a matrix of surface tangents multiplied by a matrix of surface
curvatures, i.e.,

Jf = (∇ur1 ,∇vr1 , . . . ,∇urk ,∇vrk ) K

= Ĵf K

where K is a 2k × 2k symmetric block diagonal matrix com-
posed of Ki for each contact, and Ĵf is a matrix whose columns
are the object surface tangents at all contacts. Since for the
unit sphere, K is identity, and Ĵf = Jf , we refer to Ĵf as the
unit-curvature frictionless force residual Jacobian.

The force residual controller follows the negative gradient of
(2) while assuming unit curvatures

u̇f = −ĴT
f f . (5)

To elucidate the effect of the force residual term of the grasp
controller, consider the force residual controller executing for
the planar rectangle illustrated in Fig. 1. The force residual
gradient assumes that the contacts are moving on surfaces with
positive unit curvatures (i.e., spheres). The gradient with respect
to the two contact positions is illustrated by the dashed arrows
pointing tangent to the object surface. The controller sends this
displacement to a control mechanism for displacing the contacts.
In the next control cycle, the contacts will have to be moved in
the direction of the dashed arrows and the gradient will be
reevaluated.

C. Convergence of the Force Residual Controller

The force residual controller (5) can be shown to converge to
unit frictionless force equilibrium configurations when grasp-
ing convex objects for two contacts. Consider the following
Lyapunov function:

V =
1
2
fT f . (6)

The gradient of (6) with respect to surface coordinates is

∂V

∂u
= fT ∂f

∂u

= fT Ĵf K.

Fig. 2. Extruded object (dashed line) traced out by the center of a finger as it
moves over the box.

Therefore, the gradient of V̇f along controller trajectories is

V̇ =
∂V

∂u
u̇,

= −fT Ĵf KĴT
f f .

Since K is always positive semidefinite for convex objects, it
is clear that V̇ is negative semidefinite.

Theorem 1: Let the object be convex, second-order continu-
ous with finite maximum curvature. Then the two-contact force
residual controller (5) converges to unit frictionless force equi-
librium when execution does not begin with both contacts on
the same face.

Proof: Since V̇ is negative semidefinite, the force residual
controller (5) must be stable. It converges to those configura-
tions where V̇ is zero: in unit frictionless force equilibrium,
when both contacts are on the same face, or when the columns
of K are orthogonal to ĴT

f f . First, note that since V̇ is negative
semidefinite and V is at a maximum when both contacts are
on the same face, the system never reaches a same-face con-
figuration when a same-face initial configuration is prohibited.
Second, consider the situation where the columns of K are or-
thogonal to ĴT

f f . In this case, the object surface at each contact
is flat in its direction of motion. Each contact continues to move
along a flat surface until one contact reaches a region of pos-
itive curvature, and the gradient of the Lyapunov function is
again negative definite. Although it is possible that the contact
may reach another region where the object surface is flat in the
direction of motion, V decreases every time a contact passes
through a positive curvature region. Therefore, for objects with
finite extent, V ultimately reaches zero in finite time, and we
conclude that the controller converges to unit frictionless force
equilibrium. �

The requirement by Theorem 1 for the object to be second-
order continuous theoretically excludes polygonal objects. Nev-
ertheless, these objects are not excluded in practice when a ma-
nipulator with rounded contacts is used. In this case, it is possible
to define a corresponding extruded object that is traced out by a
point on the interior of the rounded contact (see Fig. 2). Config-
urations of the rounded contacts on the actual object map onto
point contact configurations for the extruded object. See [15]
for more detail on this argument. Theorem 1 can be applied
to the extruded object and, since unit frictionless equilibrium
configurations for the extruded object can also be shown to be
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Fig. 3. Moment residual controller calculates the moment residual gradient by
assuming that object geometry is a plane tangent to the object at each point of
contact. At each iteration of the controller, the gradient is recomputed assuming
a plane tangent to the current set of contact points.

unit frictionless equilibrium on the actual object, extended to
the actual object.

D. Moment Residual Controller

The moment residual controller follows the gradient of the
unit frictionless moment residual while making a specific cur-
vature assumption. The gradient of (3) is

∂εm

∂u
= mT Jm

where

Jm =
(

∂m
∂u1

,
∂m
∂v1

, . . . ,
∂m
∂uk

,
∂m
∂vk

)
.

The partial derivative of the unit frictionless moment residual
with respect to ui is

∂m
∂ui

= ∇uri × n̂i + ri ×
∂n̂i

∂ui
.

Rather than incorporating surface curvature information into
the moment residual gradient, the moment residual controller
sets the second term to zero, effectively assuming zero-surface
curvature at the contacts

u̇i = mT (∇uri × n̂i)

= −mT ∇vri .

Coelho refers to this simplification as the “planar assump-
tion” [1]. Extending this argument to the entire moment residual
control law, we have

u̇m = −ĴT
mm (7)

where

Ĵm = (−∇vr1 ,∇ur1 , . . . ,−∇vrk ,∇urk )

is the zero-curvature frictionless moment residual Jacobian.
To clarify the differences between the moment residual con-

trol gradient (7) and the exact gradient, consider the planar
object in Fig. 3. The approximation “thinks” that the contacts
will move as if the local surfaces were flat, as illustrated by the
dotted lines. Following the gradient would cause contact a to
move to the left and contact b to move to the right, as illustrated
by the dashed arrows.

V. NULL-SPACE GRASP CONTROL

Null-space grasp control is an approach to combine the force
and moment residual controllers in a way that realizes force-
closure grasps for arbitrary convex objects. This section pro-
poses exact and approximate null space grasp control. The exact
method projects the moment residual controller displacements
into the null space of the gradient of the unit frictionless force
residual (2) and is provably convergent for two contacts. On
the basis of our simulations, this approach reaches unit friction-
less equilibrium configurations faster than the other approaches
studied in this paper. However, since it is difficult to measure
object surface curvature, this method is difficult to implement.
As a result, we also propose the approximate null space grasp
controller in this section and the switching grasp controller in
the next section.

The null-space grasp controller assures that the moment resid-
ual controller does not cause the system to ascend the unit fric-
tionless force residual by projecting moment residual control
into the null space of the unit frictionless force residual gradient
(4): ∂ εf

∂u

u̇∗ = −ĴT
f f −N (fT Ĵf K)ĴT

mm. (8)

Since

fT Ĵf KN (fT Ĵf K)ẏ = 0 (9)

for arbitrary contact displacements ẏ, V̇ for this control law
is still negative semidefinite, and the result of Theorem 1 is
unchanged.

A. Force and Moment Residual Controllers for Two Contacts

This section introduces notation for two contacts that sim-
plifies the subsequent development of the force and moment
residual controllers. Let the v parameter curve of the object
surface parameterization pass through both contacts at an iden-
tical tangent such that ∇vr1 = ∇vr2 . Then, the force residual
control gradient becomes

u̇f = −




∇urT
1

∇vrT
1

∇urT
2

∇vrT
2


 f

= −




α

0

−α

0


 (10)

where the substitution

α = ∇urT
1 n̂2 = −∇urT

2 n̂1 (11)

has been made (see Lemma 2 in the Appendix for the demon-
stration that ∇urT

1 n̂2 = −∇urT
2 n̂1).
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For two contacts, the moment-residual gradient is

u̇m = −ĴT
mm

= −




−∇vrT
1

∇urT
1

−∇vrT
2

∇urT
2


 (r1 × n̂1 + r2 × n̂2) .

Since the origin of the reference frame is at the contact centroid,
the two contact position vectors are opposite, i.e., r1 = −r2 ,
and the gradient becomes

u̇m = −




rT
1 (∇ur1 −∇ur2)

rT
1 (∇vr1 − n̂2 ×∇ur1)

rT
1 (∇ur1 −∇ur2)

−rT
1 (∇vr1 − n̂1 ×∇ur2)


 .

The notation in this equation and others to follow is simplified
with the following substitutions:

p = rT
1 ∇ur1 (12)

q = rT
1 ∇ur2 (13)

s = rT
1 ∇vr1 (14)

a = rT
1 (n̂2 ×∇ur1) (15)

b = rT
1 (n̂1 ×∇ur2). (16)

Then the expression for u̇m is

u̇m = −




p − q

s − a

p − q

b − s


 . (17)

B. Convergence of the Null-Space Grasp Controller
for Two Contacts

Since it is already established that (8) converges to unit fric-
tionless force equilibrium, all that remains is to show that it also
converges to unit frictionless moment equilibrium. We estab-
lish this for two contacts. Consider the following second-order
continuous positive-definite function defined over two-contact
configurations on convex objects where the system is in unit
frictionless force equilibrium:

W =
1
4
(r1 − r2)T (r1 − r2)

= rT
1 r1 . (18)

For two contacts, the derivative of W with respect to surface
coordinates for two contacts is

∂W

∂u
= 2




rT
1 ∇ur1

rT
1 ∇vr1

−rT
1 ∇ur2

−rT
1 ∇vr2




T

= 2




p

s

−q

−s




T

. (19)

Theorem 2: Let the object be convex, second-order continuous
with finite maximum curvature. For two contacts, the null space
grasp controller converges to unit frictionless equilibrium when
execution does not begin with both contacts on the same face.

Proof: The gradient of W along the trajectories of the com-
posite null-space controller is

Ẇ =
∂W

∂u
(u̇f + N (fT Ĵf K)u̇m )

= −2(p + q)α − 2




p

s

−q

−s




T

A




p − q

s − a

p − q

b − s


 (20)

where A = N (fT Ĵf K) is a positive definite projection matrix.
Note that A is never in the null space of u̇m or ∂W/∂u:

A projects to zero the component of u̇m that is parallel with
Ku̇f . Since K is composed of block diagonal positive definite
matrices, we have

Ku̇f = −




κ11

0

−κ33

0


 α

where κ11 and κ33 are positive. In view of (17), it is clear that u̇m

is never parallel with Ku̇f . Also, note that p is equal to q only
when the two contacts are concurrent. Since this is prohibited
by the assumption that execution does not begin with contacts
on the same face, ∂W/∂u is never parallel with Ku̇f .

We now show convergence to unit frictionless moment equi-
librium. Given Theorem 1 and the consideration in (9), we have
that the null space grasp controller converges to unit friction-
less force equilibrium. As f approaches zero, Lemma 3 requires
that α approaches zero, and therefore, the first term of (20) ap-
proaches zero. In view of Lemma 4, ∂W

∂u u̇m is always negative
semidefinite. Since A is positive definite, the second term of
(20) is also negative semidefinite.

As a result, (20) is always negative semidefinite and the con-
troller converges to a configuration where (20) is zero. Since A
is never in the null space of u̇m or ∂W/∂u, the second term of
(20) is zero only when ∂W

∂u u̇m is zero. Since the two contacts
are assumed never to be concurrent, this only occurs when p, q,
s, a, and b are zero. When this happens, note that r1 = −r2 is
normal to the surface tangent at each contact and m is therefore
zero. �
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Theorem 2 can be combined with Lemma 1 to conclude that
the exact null space grasp controller converges to force-closure
configurations.

C. Approximate Null-Space Grasp Controller

The exact null-space grasp controller (8) requires knowledge
of the object surface curvature K in order to calculate the null
space projection matrix N (fT Ĵf K). Since it may be difficult
to measure local object surface curvature at the contacts, we
consider alternatives to the exact formulation of the control law.
One approach is the “approximate” null-space controller that
projects the moment residual controller into the null space of
Ĵf :

u̇∗ = −ĴT
f f −N (Ĵf )ĴT

mm. (21)

This controller has not been proven to converge. However, sim-
ulated results (see Section VII-A) suggest that it does converge
slower than the exact null space controller but faster than the
switching controller proposed in the next section. For insight
into how the controller works, consider the null-space projec-
tion matrix N (Ĵf ). When a two-contact system is not in unit
frictionless force equilibrium, the rank of Ĵf is 3 and the rank
of N (Ĵf ) is therefore 1. The rank of the null space projection
term rises to 2 when f = 0. This suggests that, similar to the
switching controller, this controller allows the moment residual
term to converge faster after the system reaches unit frictionless
force equilibrium.

VI. SWITCHING GRASP CONTROL

Like the approximate null space grasp controller, the switch-
ing grasp controller does not require object surface curvature
at the contacts to be measured. When the unit frictionless force
residual is large, it executes the force residual controller by itself.
Once the unit frictionless force residual falls below a threshold,
then the controller displaces the contacts according to the sum
of the force residual and the moment residual control gradi-
ents. This controller is proven to converge to unit frictionless
equilibrium.

A. Switching Grasp Controller

The switching grasp controller switches between executing
the force residual controller when ‖f‖ > β and executing the
moment residual controller when ‖f‖ ≤ β. This is accomplished
using an indicator variable

Na =

{
1, if ‖f‖ ≤ β

0, otherwise.

The resulting controller is

u̇a = u̇f + Na u̇m . (22)

B. Convergence of the Switching Grasp Controller
for Two Contacts

In order to establish convergence, we evaluate the gradients of
V and W for the two cases ‖f‖ ≤ β and ‖f‖ > β. The derivative
of V with respect to surface coordinates for two contacts is

∂V

∂u
=




α

0

−α

0




T

K.

When ‖f‖ > β, Na = 0 and u̇a = u̇f :

V̇‖f ‖>β =
∂V

∂u
u̇f

= −




α

0

−α

0




T

K




α

0

−α

0




= −(κ11 + κ33)α2 (23)

where κ11 and κ33 are positive diagonal elements of K. The
gradient of W when ‖f‖ > β is

Ẇ‖f ‖>β = −2




p

s

−q

−s




T 


α

0

−α

0




= −2(p + q)α. (24)

When ‖f‖ ≤ β, Na = 1 and u̇a = u̇f + u̇m . In this situation,
we have

V̇‖f ‖≤β =
∂V

∂u
(u̇f + u̇m )

= −




α

0

−α

0




T

K




p − q + α

s − a

p − q − α

b − s




= −(κ11 + κ33)α2 − (κ11 − κ33)(p − q)α

− κ12(s − a)α − κ34(s − b)α

where κ11 and κ33 are positive diagonal elements of K, and
κ12 and κ34 are off-diagonal elements of K. The gradient of W
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Fig. 4. V and W over time during switching. At time τ , the controller switches
from Na = 0 to Na = 1, causing W to subsequently decrease. At time τ + ζ ,
the controller switches back to Na = 0, causing a possible increase in W . At
time τ + ζ + γ , when the controller switches to Na = 1 again, W is lower
than it was at time τ .

when ‖f‖ ≤ β is

Ẇ‖f ‖≤β =
∂W

∂u
(u̇f + u̇m )

= −2




p

s

−q

−s




T 


p − q + α

s − a

p − q − α

b − s




= −2(p − q)2 − 2s(s − a) − 2s(s − b) − 2(p + q)α.

(25)

The following theorem establishes convergence for the
switching controller.

Theorem 3: Let the object be convex, second-order continu-
ous with finite maximum curvature. Then, the switching grasp
controller (22) converges to a threshold around unit frictionless
moment equilibrium. The size of the threshold can be made
arbitrarily small by decreasing β.

Proof: To show convergence of m, we show that each time
the controller switches from Na = 0 to Na = 1, the value of
W decreases until a threshold proportional to β is reached (see
Fig. 4). Let τ be an arbitrary iteration of the controller when
Na has just switched from 0 to 1 such that ‖f‖ ≤ β or when
the controller has started execution in a configuration where
‖f‖ ≤ β. At time τ + ζ, u̇f + u̇m has executed for ζ steps, such
that the last step caused ‖f‖ to cross the switching threshold such
that

Vτ +ζ ≤ 1
2
β2 + V̇ τ +ζ−1

‖f ‖≤β

where V̇ τ +ζ−1
‖f ‖≤β is the value of V̇‖f ‖≤β at time τ + ζ − 1. At

this point, the controller switches to Na = 0, and u̇f exe-
cutes for another γ iterations until ‖f‖ ≤ β again. Suppose
that each of the γ iterations causes V to change by at least
V̇ min
‖f ‖>β = −(κ11 + κ33)β2 . Then, the maximum integer num-

ber of iterations of u̇f required to bring V below 1
2 β2 is

γ ≤ max

{
0,

⌈
Vτ +ζ − 1

2 β2

−V̇ min
‖f ‖>β

⌉}

≤
⌈
|V̇ τ +ζ−1

‖f ‖≤β |
−V̇ min

‖f ‖>β

⌉

≤ 2 +
Λτ +ζ−1

(κ11 + κ33)β

where

Λτ +ζ−1 = (κ11 − κ33)(p − q) + κ12(s − a) + κ34(s − b)

evaluated at time τ + ζ − 1.
Consider how W changes during the ζ iterations between

times τ and τ + ζ when Na = 1, i.e.,

Wτ +ζ − Wτ = Ẇ τ
‖f ‖≤β + · · · + Ẇ τ +ζ−1

‖f ‖≤β

≤ ζẆ τ +ζ−1
‖f ‖≤β

where Ẇ t
‖f ‖≤β is the change in W caused by the tth iteration

of the controller. The previous inequality uses the fact that, for
small α, the magnitude of Ẇ‖f ‖≤β is minimized for small values
of W (at time τ + ζ − 1). Substituting (25) into the previous
equation and using Lemma 5, we have

Wτ +ζ − Wτ ≤ 2ζ [−Hτ +ζ−1 + |p + q|β]

≤ 2ζ
[
−Hτ +ζ−1 + ‖r1‖β2]

where Hτ +ζ−1 = (p − q)2 + s(s − a) + s(s − b) is evaluated
at time τ + ζ − 1 (when it is largest), and we have used the fact
that the magnitude of f never exceeds β between time τ and
τ + ζ − 1.

Now, consider how W changes during the γ iterations be-
tween times τ + ζ and τ + ζ + γ when Na = 0, i.e.,

Wτ +ζ+γ − Wτ +ζ = Ẇ τ +ζ
‖f ‖>β + · · · + Ẇ τ +ζ+γ−1

‖f ‖>β

≤ γẆmax
‖f ‖>β

where, as before, Ẇ t
‖f ‖≤β is the change in W caused by the

tth iteration of the controller, and Ẇmax
‖f ‖≤β = maxt{Ẇ t

‖f ‖≤β}.
Using Lemma 5, we have

Wτ +ζ+γ − Wτ +ζ ≤ 2γrmaxf 2
τ +ζ

where fτ +ζ is the unit frictionless force residual at the beginning
of the τ + ζ controller iteration, and rmax is the maximum value
of ‖r1‖ between time τ + ζ and τ + ζ + γ.

We can use Vτ +ζ to bound f 2
τ +ζ , i.e.,

f 2
τ +ζ = 2Vτ +ζ

≤ β2 + 2V̇ τ +ζ−1
‖f ‖≤β

= β2 − 2(κ11 + κ33)β2 − 2Λτ +ζ−1β.

Dropping the τ + ζ − 1 subscript from Λ, we have

Wτ +ζ+γ − Wτ +ζ ≤ 2γrmax

×
[
β2 − 2(κ11 + κ33)β2 − 2Λβ

]
≤

(
4 + 2

Λ
(κ11 + κ33)β

)
rmax

×
[
β2 − 2(κ11 + κ33)β2 − 2Λβ

]
.
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Fig. 5. Simulation results. (a) Unit frictionless force residual and (b) moment residual as a function of controller iteration for a representative simulation of the
three controllers. The solid line is the exact null-space controller, the dotted line is the approximate null-space controller, and the dashed line is the switching
controller. (c) Performance of the switching controller for different values of β . The dashed line is β = 0.5, the dotted line is β = 0.1, and the solid line is
β = 0.01.

Combining Wτ +ζ − Wτ and Wτ +ζ+γ − Wτ +ζ , we have

Wτ +ζ+γ − Wτ ≤ 2rmaxβ
2 [ζ − 4(κ11 + κ33) + 2]

+ 2Λβ

[
rmax

κ11 + κ33
− 4rmax − 2

]

− 2ζHτ +ζ−1 −
4Λ2

κ11 + κ33
. (26)

The key thing to note about (26) is that the first two terms are
factors of β2 and β, respectively, and by applying Lemma 4, the
last two terms are negative semidefinite. Therefore, each time
the controller switches from Na = 0 to Na = 1, W decreases
until Hτ +ζ−1 reaches a threshold around the origin not larger
than the first two terms in (26). Recall that p does not equal q and
s does not equal a or b unless the two contacts are concurrent.
However, since a concurrent configuration is prohibited by the
assumption that execution does not begin with the contacts on
the same face, H approaches zero only when p, q, s, a, and
b approach zero. Since the first and second terms of (26) can
be made arbitrarily small by decreasing β, we can force the
switching controller to converge to a configuration with p, q, s,
a, and b arbitrarily close to zero. Since p, q, and s are zero only
when r1 is orthogonal to the surface tangents at the contacts,
we conclude that the system converges to a threshold around
unit frictionless moment equilibrium that can be lowered by
reducing β. �

VII. EXPERIMENTS

The three controllers proposed in this paper were compared
with each other in simulation. The approximate null space grasp
controller was also tested in practice using Dexter: a bimanual
dexterous humanoid robot at the University of Massachusetts,
Amherst.

A. Experiment 1: Simulation

The simulations explored grasping a spatial ellipsoid with
principle axis lengths 1, 2, and 3 using two contacts. In order

to focus the experiment on the relative performance of the con-
trollers in the absence of the effects of manipulator kinematics
or control, the two contacts were modeled as free-floating points
constrained to the surface of the ellipsoid. The switching con-
troller executed with a force threshold parameter of β = 0.1.
The approximate null space controller evaluated the null-space
projection matrixN (Ĵf ) = I − Ĵ+

f Ĵf (a+ denotes the damped-
least-squares inverse [40] of a), with a damping parameter of
0.01. In the simulations, there is no direct correspondence be-
tween step size and time. In general, the control law can be
executed as fast as the mechanism for contact displacement and
contact sensing allows.

The simulation was executed 100 times with the contacts
initialized in randomly selected locations on the ellipsoid. All
three controllers converged to a neighborhood around unit fric-
tionless equilibrium in all cases. Fig. 5(a) and (b) illustrates
representative force and moment residual trajectories for the
three controllers. Fig. 5(c) compares the performance of the
switching controller for three different values of β starting from
the same initial contact configuration.

The results are consistent with what might intuitively be
expected. All three controllers have essentially the same per-
formance with respect to the unit frictionless force residual.
This reflects the fact that before converging to a neighborhood
around unit frictionless force equilibrium, all controllers fol-
low essentially the same force residual control gradient. The
three controllers differ in their unit frictionless moment residual
performance. The exact controller converges the fastest, the ap-
proximate controller converges next fastest, and the switching
controller converges slowest. We found that it was possible to
change the relative performance of the approximate controller
and the switching controller by adjusting the damping parame-
ter and the β parameter, respectively. Although Fig. 5(c) indi-
cates that the switching controller works for the ellipsoid with
high values for β, this is likely not to be true for arbitrary ob-
jects. Also, note that Fig. 5(c) indicates apparently equal conver-
gence of the controller to zero for all values of β. This suggests
that the convergence bound derived at the end of the proof of
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Fig. 6. Three objects for which the grasp controller was tested.

Fig. 7. Experiment 2 (towel roll, two contacts). Distribution of contact ori-
entations (a) before and (b) after the grasp controller has executed. Orientation
is the angle between a line that passes between the two grasp contacts and the
major axis of the object (see text).

Theorem 3 describes the worst-case behavior of the controller.
We hypothesize that the switching controller will outperform
this bound for many objects.

B. Experiment 2: Dexter Grasping a Towel Roll

This experiment was performed using Dexter: a bimanual
dexterous humanoid robot at the University of Massachusetts,
Amherst. Dexter consists of two whole arm manipulators
(WAMs), two Barrett hands equipped with six-axis load cells at
the fingertips, and a Bisight stereo camera system. Contact dis-
placements were realized by a hybrid force-position controller
that applied a small inward force at each contact while displac-
ing the contacts tangent to the surface. The contacts tracked
the velocities specified by the grasp controller as closely as the
manipulator kinematic constraints allowed.

The approximate null space grasp controller synthesized 58
two-contact grasps of the vertical towel roll (10 cm diameter
and 20 cm tall), as shown in Fig. 6(a). On each trial, the grasp
controller began execution in a randomly selected configuration
relative to the object and continued until the controller conver-
gence or until the human operator detected that the manipulator
had collided with the environment. Two of the three fingers on
the Barrett hand were grouped together as a single contact (a
virtual finger) [41], [42]. In this experiment and in experiment
3, computational time was negligible relative to the speed of
arm motion.

Fig. 7(a) and (b) shows the density of hand orientations be-
fore and after executing the grasp controller. Hand orientation
is measured by the angle between the line that connects the two
virtual contacts and the towel roll major axis. The figures show
that for the vertical towel roll, the two-contact grasp controller
aligned the hand orthogonal to the major axis of the cylinder on

Fig. 8. Experiment 2 (towel roll, two contacts). (a) Average squared force
residual and (b) average squared moment residual for the grasp trials that termi-
nated near the peak at π/2 in Fig. 7(b). The horizontal axis is in milliseconds.

most of the grasp trials. However, on a few trials, the controller
terminated near the small peak at 0.45 rad in Fig. 7(b). These tri-
als were terminated by the human operator because the Barrett
hand palm collided with the object. These collisions highlight
the fact that, without any provision for obstacle avoidance or
configuration optimization, limitations on contact mobility may
interfere with grasp controller performance. On these grasp tri-
als, one of the grasp contacts was on the top of the cylinder,
while the other was on the side. As the grasp controller dis-
placed the contacts around the object, it did not take the limited
aperture of the Barrett hand into account and caused a collision.

Fig. 8 illustrates the average force and moment residual error
trajectories for the grasp trials that comprise the peak near π/2
in Fig. 7(b). Note that the moment residual error begins to con-
verge only after convergence of the force residual controller is
complete. This is consistent with the proofs of Theorems 2 and
3, which suggest that moment residual convergence depends on
force residual convergence. Fig. 8(a) shows the average force
error (squared force residual), while Fig. 8(b) shows the average
moment error. The horizontal axis in both figures is grasp con-
troller step. The graphs illustrate that, on average, both force and
moment errors converge to configurations with small wrench
residuals in approximately 1000 steps (20 s, not including the
time taken to tare the fingertip load cells.)

C. Experiment 3: Grasping a Squirt Bottle and a
Detergent Bottle

In the third experiment, the approximate null space grasp
controller was executed for the squirt bottle and detergent bot-
tle shown in Fig. 6(b) and (c). The experimental procedure
was the same as that used in experiments 2. On each trial, the
grasp controller started from a randomly selected configuration.
Twenty-eight grasp synthesis trials were executed for the squirt
bottle and 31 grasps for the detergent bottle. Although the grasp
controller had problems with kinematic limitations of the manip-
ulator when grasping the cylinder, there were no such problems
with the squirt and detergent bottles because, for these objects,
the grasp controller tended away from grasp configurations that
caused the manipulator to collide with the table. Figs. 9 and 10
show that the grasp controller found low-error grasps for these
objects. These results demonstrate that although the controllers
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Fig. 9. Experiment 3 (squirt bottle, two contacts). (a) Average force residual
and (b) moment residual. The horizontal axis is in milliseconds.

Fig. 10. Experiment 3 (detergent bottle, two contacts). (a) Average force
residual and (b) moment residual. The horizontal axis is in milliseconds.

are theoretically correct only for convex objects, they perform
well for arbitrary objects in practice.

VIII. CONCLUSION

Rather than planning contact positions based on global ge-
ometric information, grasp control uses local contact measure-
ments to synthesize grasps. An analogy can be drawn between
the use of manipulator compliance in insertion tasks and grasp
control in grasping tasks. In both cases, a control law using local
force feedback is used to adjust what might initially be only an
approximate solution. Both methods can make the fine adjust-
ments in manipulator configuration that are extremely difficult
to achieve in other ways.

This paper focuses on a theoretical understanding of null
space grasp control. Three different variants on the controller
are proposed: exact null space grasp control, approximate null
space grasp control, and switching grasp control. Exact control
and switched control are theoretically demonstrated to converge
to unit frictionless equilibrium contact configurations. Never-
theless, all three controllers are found to converge in simula-
tion from arbitrary initial contact configurations. The approx-
imate null space controller has been tested extensively using
Dexter—a bimanual dexterous humanoid robot at the Univer-
sity of Massachusetts, Amherst—and is found to work well.

From a theoretical perspective, an important remaining ques-
tion is whether convergence can be established for the approx-
imate null space controller of (21). Our experimental results
suggest that this controller works well. However, the controller
has not yet been shown to converge for all convex objects. From
a broader perspective, there are many ways that force informa-

tion might be used to assist robot grasping. Intuition suggests
that humans rely on a sense of touch to grasp without looking at
the object and make grasping more robust. We expect that this
will continue to be an important research question in the future.

APPENDIX

The following Lemma was used in Section III-B and is proven
next.

Lemma 1: When the contacts can apply frictional torsional
loads about the contact normal as well as tangential frictional
forces, then a sufficient condition for 3-D two-finger force clo-
sure is nonmarginal equilibrium.

Proof: Let f1 and f2 be equilibrium forces on the object. Let
a1 and a2 be equilibrium contact moments (induced by the soft
contacts) about the surface normals. Let r1 and r2 be the contact
positions in a coordinate frame centered outside the object. Let
f and m be the components of an arbitrary wrench applied to
the object. Let β be the component of m orthogonal to r1 − r2 .
Let α be the other component.

Since the system is in equilibrium, we have that f1 + f2 =
0 and r1 × f1 + r2 × f2 + a1 + a2 = 0. Let f ′1 = f1 − f + v,
f ′2 = f2 − v, a′

1 = a1 − α, and a′
2 = a2 , where

v = (x1 × f − β) × (x1 − x2).

Then, we have f ′1 + f ′2 = −f and a′
1 + a′

2 + r1 × f ′1 + r2 ×
f ′2 = −m. Therefore, it is possible to resist an arbitrary wrench
f and m, as long as f ′1 , f ′2 , a′

1 , and a′
2 are within their friction

cones. Following the argument in [33], for any force difference
c, it is possible to apply the net force f ′1 = γf1 + c by increas-
ing γ sufficiently. Similarly, arbitrary moments about the contact
normal can be applied. �

The following three lemmas are used in Section VI.
Lemma 2: Let (u1 ,v1 ,n1) and (u2 ,v2 ,n2) be two orthonor-

mal right-handed coordinate frames such that v1 = v2 . Then,
nT

1 u2 = −nT
2 u1 .

Proof: Let R be a rotation matrix that describes the relation-
ship between the two coordinate frames, i.e.,

(u2 ,v2 ,n2) = R(u1 ,v1 ,n1).

Let Φ describe a 90◦ rotation about v1 = v2 such that

n1 = Φu1

and

n2 = Φu2 .

Then

nT
1 u2 = nT

1 Ru1

= (Φu1)T RΦT n1

= uT
1 ΦT RΦT n1 .

Since both Φ and R rotate aboutv1 = v2 , these rotation matrices
commute

ΦT RΦT = RΦT ΦT .
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Fig. 11. Geometry of β .

However, note that since ΦT rotates through 90◦, ΦT ΦT rotates
through 180◦, or

nT
1 u2 = uT

1 ΦT RΦT n1

= uT
1 RΦT ΦT n̂1

= −uT
1 Rn1

= −uT
1 n2 .

�
Lemma 3: Let (u1 ,v1 ,n1) and (u2 ,v2 ,n2) be two orthonor-

mal right-handed coordinate frames such that v1 = v2 and
nT

1 n2 ≤ 0. Then

‖nT
2 u1‖ ≤ ‖f‖ ≤

√
2‖nT

2 u1‖
where f = n1 + n2 .

Proof: Let β be the magnitude of the angle between n1 and
n2 . Since nT

1 n2 ≤ 0, then β must be bounded by 90 ≤ β ≤ 180.
Since v1 = v2 , then n1 , n2 , u1 , and u2 lie in a plane. By the

geometry of the situation, the magnitude of the angle between
n2 and u1 is β − 90 (see Fig. 11). Therefore

‖nT
2 u1‖ = cos(β − 90)

= ‖ sin β‖

= 2
∥∥∥∥ sin

β

2
cos

β

2

∥∥∥∥.

Let h be the unit vector such that

n1 + n2 = ‖f‖h
and ‖f‖ = ‖n1 + n2‖. Then

‖f‖ = ‖hT n1‖ + ‖hT n2‖.
Let γ be the angle between h and n1 such that

cos
β

2
= cos γ

= ‖hT n1‖
= ‖hT n2‖

=
‖f‖
2

.

Since sin
β

2
≤ 1, we have

‖nT
2 u1‖ =

∥∥∥∥2 sin
β

2
cos

β

2

∥∥∥∥
≤ 2

∥∥∥∥ cos
β

2

∥∥∥∥
≤ ‖f‖.

Also, since β ≥ 90 by assumption, then sin β
2 ≥ 1√

2
, and we

have

‖n̂T
2 u1‖ =

∥∥∥∥2 sin
β

2
cos

β

2

∥∥∥∥
≥

√
2
∥∥∥∥ cos

β

2

∥∥∥∥
≥ 1√

2
‖f‖.

Combining the earlier bounds on ‖f‖, we have

‖n̂T
2 u1‖ ≤ ‖f‖ ≤

√
2‖n̂T

2 u1‖.

�
Lemma 4: Let (u1 ,v1 ,n1) and (u2 ,v2 ,n2) be two coordi-

nate frames such that v1 = v2 and nT
1 n2 ≤ 0. Let s = rT v1 ,

a = rT (n2 × u1), and b = rT (n1 × u2) for an arbitrary vector
r. Then, s = 0 implies that a = 0 and b = 0. Also, sa ≤ 0 and
sb ≤ 0.

Proof: Since v1 = v2 , we have that u1 , n1 , u2 , and n2 are or-
thogonal to v1 . Therefore, n2 × u1 = γv1 and n1 × u2 = ηv1 ,
where γ = (n2 × u1)T v1 and η = (n1 × u2)T v1 . The vari-
ables a and b can be rewritten as a = γs and a = ηs. Therefore,
we have s = 0, which implies that a = 0 and b = 0.

Note that γ and η must be negative, i.e.,

γ = (n2 × u1)T v1

= nT
2 (u1 × v1)

= nT
2 n1

≤ 0

and

η = (n1 × u2)T v1

= nT
1 (u2 × v2)

= nT
1 n2

≤ 0.

We can conclude that sa and sb are negative because

sa = rT v1rT (n2 × u1)

= γrT v1vT
1 r

≤ 0

and

sb = rT v1rT (n1 × u2)

= ηrT v1vT
1 r

≤ 0.

�
Lemma 5: Let (u1 ,v1 ,n1) and (u2 ,v2 ,n2) be two or-

thogonal coordinate frames such that v1 = v2 . Then, |rT u1 +
rT u2 | ≤ ‖r‖‖n1 + n2‖.

Proof: Note that n1 and u1 are related by the same rota-
tion matrix that relates n2 and u2 : n1 = Ru1 and n2 = Ru2 .
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Therefore

‖u1 + u2‖ = ‖RT n1 + RT n‖
= ‖n1 + n2‖

and

‖rT u1 + rT u2‖ ≤ ‖r1‖‖n1 + n2‖ (27)

where the last inequality used Lemma 3. �
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