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Abstract

The real world is composed of sets of objects that have multidimensional prop-
erties and relations. Whether an agent is planning the next course of action in
a task or making predictions about the future state of some object, useful task-
oriented concepts are often encoded in terms of the complex interactions between
the multi-dimensional attributes of subsets of these objects and of the relationships
that exist between them. In this paper, we present extensions to the Spatiotemporal
Multi-dimensional Relational Framework (SMRF) Trees, a data mining technique
that extends the successful Spatiotemporal Relational Probability Tree models.
From a set of labeled, multi-object examples of some target concept, our algo-
rithm infers both the set of objects that participate in the concept, as well as the
key object and relational attributes that characterize theconcept. In contrast to
other relational model approaches, SMRF trees do not require that categorical re-
lations between objects to be defined a priori. Instead, our algorithm infers these
categories from the continuous attributes of the objects and relations in the train-
ing data. In addition, our approach explicitly acknowledges the multi-dimensional
nature of attributes, such as position, orientation and color in the creation of these
categories. We present an updated learning algorithm for the SMRF approach,
and validate our updated algorithm in both two and three dimensional domains
that contain groups of static or moving objects.

1 Introduction and Related Work

The world can be modeled as a collections of objects, each with a set of associated attributes.
Whether it is a robot preparing to perform the next step in a cooking sequence or an agent gen-
erating warnings of severe weather, only a specific subset ofthe observable objects is relevant to
making decisions about what steps to take next. In particular, the relevance of an object is deter-
mined by its attributes and the relations that it has with other objects. These attributes are often
continuous and multi-dimensional, such as Cartesian positions or colors in a red-green-blue (RGB)
space. Given a set of training examples, our challenge is to discover the objects that play the crucial
roles in the examples as well as the description of the key object attributes and relations.
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The problem of learning these attributes and relations is a form of relational learning[8, 12]. Most
relational learning approaches are formulated in terms of graphical models [6, 23, 19], logical for-
mulae [2], or some combination thereof [22, 24]. Our work, however, focuses on a different method
of solving the problem, utilizing augmented decision trees. In particular, the SMRF approach is
inspired by the successful Relational Probability Tree (RPT) [20] and the Spatiotemporal Relational
Probability Tree (SRPT) [18] approaches, which create probability estimation trees [21], a form of
a decision tree with probabilities at the leaves. Splits in the decision trees can ask questions about
the observed properties of the objects or their relationships. Given a novel graph, these decision
trees estimate the probability that the graph contains a setof objects that corresponds to some target
concept. Like Kubica et al. [14, 13], these approaches buildmodels using pre-specified categorical
relations.

In this paper, we discuss the Spatiotemporal Multidimensional Relational Framework (SMRF) [3],
as well as extensions to the original formulation presentedin [3], which include a new and im-
proved learning algorithm. SMRF trees extend prior relational probability tree approaches in a
number of significant ways. The first extension is the abilityto ask questions based on continuous,
multi-dimensional attributes. For example, the color of a pixel can be represented as a RGB tuple.
Capturing a concept such as “yellow” requires that the blue variable be low but the green and red
variables can take on values almost within their full range so long as they vary together. While RPTs
and SRPTs can split on individual continuous variables (e.g., [11, 6, 7]), it is desirable to explicitly
acknowledge the fact that multiple dimensions can covary ininteresting ways.

A second key extension made by the SMRF approach is the ability to define relational categories dy-
namically. For example, objects may have a position attribute defined within some global coordinate
frame. The decision tree splits can be made within a metric space that captures the position of one
objectrelative to another. As with the multi-dimensional object attributes, splits on these relational
attributes are made using decision surfaces within the metric space. In contrast, RPTs and SRPTs
ask relational questions using categorical descriptions of the attributes.

A third key extension made by the SMRF approach is the abilityto reason explicitly about object
instances. In graph-based approaches (such as RPTs and SRPTs), the objects/relations that satisfy a
particular question are typically not represented in such away that they can be referenced by ques-
tions deeper in the tree. This limits the types of concepts that can be easily represented and can
make it difficult to address the question ofwho the actors are that play the key roles in determining
the graph label. We refer to this as a graph-based method because the query (a graph representing
objects and relations) descends as a single unit through thedecision tree. In contrast, an instance-
based method (such as SMRF trees) explicitly represents theacting objects through an instantiation
process. A question at one level in the tree can then refer to the set of objects that have been in-
stantiated to that point. This allows absolute questions about individual objects or relative questions
about two or more objects to be asked.

In this paper, we provide an overview of SMRF trees, and then discuss an improved learning al-
gorithm, compared to [3]. We then describe experiments performed using the new algorithm and
discuss the implications of their results.

2 SMRF Trees

SMRF trees assess the probability that a given collection ofobjects contains an instance of a par-
ticular target concept. We model these collections of objects as graphs with attributed objects and
relations. Many relations in our context are defined as a function of the attributes of the objects. For
example, objects may include apositionattribute, as defined within some fixed coordinate frame. In
addition, the position of one object may be describedrelative to that of another. Atarget concept
encompasses a subset of objects from an example and encodes specific attribute values of those ob-
jects and relations between them. Each graph is labeled as either positive or negative on the basis of
whether or not some subset of its objects matches the target concept definition.

The learning problem to be solved is: given some number of positive and negative graphs, construct
a model that can assess the probability that a given graph contains the target concept [17]. For
instance, a target concept may be “a red object near a green object.” When, for example, blue
objects are also present in some of the positive graphs, the learning approach must weigh the set of
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possible target concepts, and choose the one that best explains the positive graphs. This problem
of having to identify the subset of objects and their relationships that define a target concept can
be viewed as one ofmultiple instance learning(MIL) [4, 16, 17], since the label of each graph is
known, but it is unknown which combinations of objects in thegraph encode the target concept.

As an illustration of the classification process, Figure 1 shows two hand-constructed SMRF trees.
Panela shows a very simple SMRF tree that identifies yellow objects.The first node in the tree
in panel a dynamically binds objects from the graph to the variable A. This instantiation action
enables SMRF trees to classify graphs based on attributes ofparticular objects or relations. Although
the question in the figure is rendered in English, it is actually asked with respect to a decision
volume represented in RGB space. For RGB variables (as well as positions in Euclidean space), it
is convenient to use an ellipsoidal decision volume. If the query falls within this volume, the object
falls down theYesbranch of the question node. If the query falls outside the volume, the object falls
down theNo branch. If the object has no color attribute, it falls down theError branch.

Figure 1: (a) A hand-crafted SMRF tree that identifies yellowobjects. Although we describe the
decision tree split with a categorical label (“yellow”), the concept is represented as a volume in RGB
space. (b) A tree that identifies yellow objects that are nearred objects. (c) A set of objects scattered
on a plane.

Leaf nodes represent a probability function over membership in the target concept. In this example,
yellow objects are the most likely examples of the target concept. When this tree is used to classify
the set of objects shown in Figure 1(c), A is instantiated with each object in turn. Here, objects
1 and 4 fall into the Yes branch leaf node, and are assigned a probability of 98% of being in the
target concept, as calculated from the training data. Figure 1(b) shows a more complicated example
that identifies a yellow object near a red object. At the root,A is instantiated with each object in
the graph. Following the yes branch, B is instantiated with asecond object drawn from the graph.
The tree then asks whether B is red and, if so, examines the relative position of A and B. In this
example, the position of A is measured within a coordinate frame whose origin is defined by the
position of object B. We refer to a specific ordered list of instantiations (e.g., A = 1 and B = 2) as
an instantiation sequence. The variables are implicit in the order of the sequence. Forexample, the
set of instantiation sequences that is expanded and subsequently sorted by the tree in Figure 1(b)
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for the objects in Figure 1(c) is: leaf 1: (2), (3), (5), leaf 3: (1, 2), (1, 4), (4, 2), (4, 1), leaf 5: (4,
3), and leaf 6: (1, 3), (1, 5), (4, 5). An instantiation sequence that is expanded into a set of longer
instantiation sequences is called aparent, and the set of expanded sequences is called thechildren.
Because instantiation sequence (4, 3) falls into a leaf of high probability, the graph is labeled as
likely to contain an instance of the target concept. Furthermore, the tree identifies objects 3 and 4 as
the key actors. Note that not all combinations of objects or relations are considered during the query
process because the tree structure enables the search spaceto be quickly pruned. In Figure 1(b), we
only instantiate B objects in the cases where A satisfies the “yellow” model.

The SMRF approach allows complex questions to be defined in terms of the multidimensional at-
tributes of the objects in the training data. While a decisionsurface in a multidimensional space can
be represented in a variety of ways, we choose to define them interms of three components:

• a mapping function, φ, which computes some quantity over some subset of the attributes of
some subset of the objects in an instantiation sequence,

• a pdfp(•|θ), defined over the codomain of the mapping function, and
• a decision thresholdΘ, which determines the sorting at the question node.

A mapping functionmaps an instantiation sequence to a value in a metric space. Amapping func-
tion selects some number of objects out of an instantiation sequence, and performs some numeric
operation on their attributes. For instance, a mapping function might compute the relative distance
of the spatial locations of the first and third objects in the instantiation sequence. Another mapping
function might compute the relative difference of the colorattributes of the first and second objects
in the sequence. A third mapping function might simply return the value of the location attribute of
the fourth object in the sequence.

For defining a decision boundary in Euclidean spaces, the Gaussian distribution is a convenient
choice of pdf. Combined with a likelihood threshold, this defines an ellipsoidal volume in the space;
points falling within this volume are considered as satisfying the question. The representative power
of the SMRF approach is found in the different possible mapping functions that are available, and
the ability to create an appropriate decision volume based on the training data. If, for example, the
distance between two objects is a central part of the target concept, the mapping function allows
the distance relationship to be expressed, and the pdf-threshold pair allows the appropriate distance
between the objects to be modeled from the training data.

Formally, in the classification process, a question node computesp(φ(I)|θ) for each instantiation
sequenceI sorted to that node. For eachI, if p(φ(I)|θ) ≤ Θ, I is sorted down the No branch. If
p(φ(I)|θ) > Θ, I is sorted down the Yes branch. Ifφ(I) is undefined forI (e.g., ifφ is defined over
an attribute that the objects inI do not possess), thenI is sorted down the Error branch.

3 Learning Algorithm

The objective of our SMRF tree learning algorithm is to grow atree that accurately predicts the label
of new graphs. A SMRF tree probabilistically classifies a graph as containing the target concept
based upon the probability of the highest-probability leafnode into which an instantiation from the
graph in question is sorted. Because graphs are probabilistically classified, the algorithm seeks to
build a tree that will maximize the likelihood of correct graph classification over a training set. The
likelihood of correct classification(L) is defined as follows:

L =

(

∏

G∈G+

Pr(W(G))

)

×

(

∏

G∈G−

(1− Pr(W(G)))

)

, (1)

whereG+ andG− denote the set of positive and negative graphs, respectively, andW(G) denotes
the highest-probability leaf in the tree into which an instantiation sequence from graphG is sorted.
In addition, Pr(l) denotes the probability value that leafl assigns to instantation sequences that reach
it. The likelihood of the data given the tree is thus higher when instantiation sequences from positive
graphs are sorted into leaf nodes with a high probability, and lower when no instantiation sequences
from a positive graph are sorted into a high-probability leaf. The likelihood of the data is also higher
when no instantiation sequences from negative graphs are sorted into high-probability leaves, and
lower when at least one such instantiation sequence is sorted into a high-probability leaf.
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Learning a tree that maximizesL for a given dataset is an iterative multi-step process. On the
initial iteration, the learning algorithm begins with a “stub” – a trivial tree comprised of only a root
node and a single leaf node. The tree is then repeatedly grownaccording to the following greedy
algorithm:

1. A set of leaf nodes is chosen for possible expansion.
2. For each leaf node to be expanded:

(a) A set of possible expansions is sampled, resulting in a set of candidate trees.
(b) For each candidate tree:

i. The parameters of each question node model are optimized.
ii. A decision threshold in likelihood space is chosen.
iii. The tree leaf node probabilities are re-computed.

3. The candidate tree with the greatest improvement toL is identified. If the improvement is
statistically significant, it replaces the current tree andthe algorithm begins again at step 1.
Otherwise, the algorithm halts.

The details of the above operations are explained in more detail below.

Choosing Leaves for Expansion In order to make the algorithm more efficient, only a subset of
the available leaves are considered for expansion. To select the leaves to expand, the algorithm
scores each of the leaves, and selects then highest-scoring leaves above a minimum threshold. In
this work, n was empirically set to three. Each leaf is scored according to how muchL would
improve if the leaf were to be replaced by an optimal expansion.

Generating Candidate Trees The expansion process replaces a leaf node in the tree with a partial
tree, called anexpansion. All legal expansions contain one question node, which has three leaf nodes
as children (on its Yes, No, and Error branches, respectively). Some legal expansions also include
one or more instantiation nodes above the question node. Theexpansion process thus enables the
tree to ask a new question about previously instantiated objects, about new objects, or incorporating
both. Each candidate question node is determined by its mapping function. Each mapping function
is associated with a particular pdf, such as a Gaussian or vonMises distribution. The pdf parameters
and decision threshold are learned later in the algorithm.

A number of mapping functions are defined, allowing the learning algorithm to ask a variety of types
of questions. “Absolute” mapping functions simply return the value of an attribute at a particular
position in the instantiation sequence. For example, a mapping function might return the location of
the third object in the instantiation sequence. “Relative”mapping functions return the (vector) dif-
ference between the values of a particular attribute for twodifferent objects. For example, a mapping
function might compute the vector difference in RGB space between the second and third object of
the instantiation sequence. Mapping functions that compute the Euclidean distance between two
attribute values are also defined.

For each leaf node selected for expansion, a number of candidate expansions are individually applied
to the tree, resulting in a set of candidate trees. Each candidate tree is then optimized according to
the following procedures.

Optimizing Question Node Models For a given candidate tree, the parameters of the pdf at the
expansion question node are optimized so as to capture the output of the mapping function for the
“best” instantiation sequences. Each instantiation sequence is given a weighting, and the maximally-
weighted instantiation sequences from each positive graphare used to estimate the model parame-
ters.

Models are learned using an iterative process. An initial model with parametersθ1 is selected based
on a point of maximal diverse density [15]. Based on the current model, each instantiation sequence
I at iterationt is assigned a weightwt(I), which is equivalent top(φ(I)|θt). New model parameters
θt+1 are estimated to maximize the following likelihood:

L̂(θt+1) =
∏

G∈G+

p(φ(IGx )|θt+1))
wt(I

G

x
), (2)

5



whereIGx denotes the highest-weighted instantiation sequence fromG at the question node being
optimized. This process is repeated untilL̂ converges.

Computing Decision Thresholds Once the final parametersθq of the pdf model have been de-
termined, a decision threshold is computed to determine howthe model will sort instantiation se-
quences. Following Friedman (1977) [5], we use the point of maximum Kolmogorov-Smirnov (K-S)
distance betweenp(φ(IGx )|θq)’s of the positive graphs and thep(φ(IGx )|θq)’s of the negative graphs
as the decision boundary. After determining the parametersof the question node model, the instan-
tiation sequences are sorted into the appropriate child leaf nodes.

Computing Leaf Node Probabilities The last step of the optimization procedure is to compute
tree leaf node probabilities that maximizeL for the current sorting. This task is made difficult
given that the value ofL is determined by a series of relatedmax operators. However, we can
see that if a leafl is the maximum-probability leaf forp positive graphs andn negative graphs,
the probability assignment that maximizesl’s contribution to the overall likelihoodL is p

n+p
(the

intuitive frequentist value). We can therefore maximize the overall likelihood through the following
process: The ratio p

n+p
is computed for each leafl. The maximum such ratio is assigned as the

probability for its corresponding leaf. The process is thenrepeated, with newp andn counts ignoring
the graphs sorted to leaves that have already been assigned probabilities. Once all graphs have been
removed from consideration, any remaining leaves are assigned probabilities of 0.

Evaluating Statistical Significance Over the set of candidate expansions, the best performing
candidate treeTc is considered as a replacement for the current tree. If this new tree performs
significantly better than the current tree according to a likelihood ratio test, then this replacement
is kept. Because the sample size is reasonably large,−2 log L

LTc

is approximatelyχ2 distributed
with degrees of freedom equal to the difference in the numberof parameters in the candidate tree
and the current tree [9]. The number of parameters in the treeis the number of leaf and instantiation
nodes, plus the sum of the number of distribution parametersin each question node. To compensate
for the multiple comparisons problem, we employ aŠidák correction to obtain a collective cutoff of
α = 0.1 [10].

4 Experimental Results

Through the following experiments, we demonstrate five key properties of the proposed learning
approach. First, that the learning algorithm is able to construct an appropriate model for grounding
a particular target concept. Second, that the algorithm canconstruct complex target concepts con-
sisting of multiple questions. Third, that the algorithm can find an appropriate target concept even
when “distractor” objects are present. Fourth, that the algorithm can be robust to noise in the labels
of the training examples. And fifth, that the algorithm can learn disjunctive concepts. The algorithm
was tested with six problems: five involving the classification of multi-object structures and one
involving the prediction of the outcome of actions in a dynamic environment.

4.1 Multi-Object Structures

The following datasets were utilized to test the ability of the algorithm to classify conjunctive and
disjunctive spatial concepts:

1. a blue object above a green object (BaG),
2. a blue object above a green object, or a green object above ablue object (BaG/GaB),
3. a red object above a green object, or a blue object above a yellow object (RaG/BaY),
4. a red object or a green object (R/G),
5. an object oriented to the left, or an object oriented to theright (L/R).

With the exception of the last dataset, all were comprised ofobjects with two attributes:3D position
andRGB color. The last dataset was comprised of objects with three attributes:2D position, RGB
color, and2D orientation. All of the datasets were computer-generated.
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Figure 2: Mean and std AUCs for the five datasets.

A number of mapping functions were provided to the algorithm. For the 3D (2D) position attribute,
the algorithm could choose to model the absolute location ofan object inR3 (R2), the distance
between the object locations, or the difference vector between two objects inR3 (R2). The pdfs
used for these models were Gaussian distributions of three (two) dimensions. For the color attribute,
the algorithm could choose to model either the RGB color of a single object, or the difference
vector in RGB space between the colors of two objects. These pdfs were also Gaussians of three
dimensions. For 2D orientation, the algorithm could chooseto model the absolute orientation of an
object in angular coordinates. The pdf for this model was a von Mises distribution.

For these data sets, 100 positive example graphs and 100 negative example graphs were generated,
according to the specific target concept involved. For training and testing the algorithm, 10-fold
cross-validation was employed. SMRF trees do not definitelyclassify a graph as containing or
not containing a target concept, but rather return the probability that the graph contains the target
concept. For this reason, classification performance was measured in terms of the receiver operating
characteristic (ROC) curve, and the area under this curve (AUC).

The results of these experiments are shown in Figure 2. While these concepts are complex in their
own right, distractor objects were also added to test the ability of the learning algorithm to infer
the target concept under more difficult conditions. In addition, to test the robustness of the learning
algorithm under other noise conditions, the labels of some percentage of randomly-chosen examples
in the training set were inverted (from positive to negative, or vice-versa).

These results indicate that the algorithm is able to learn a range of complex and disjunctive spa-
tiotemporal concepts, involving such varied attributes aslocation, color, and orientation. In par-
ticular, such concepts can be learned to a high degree of accuracy in the no corruption case, even
with a moderate number of distractors present, as seen in Figure 2(b). As the amount of corruption
increases, classification performance for the harder concepts decreases. However, for most of the
simpler concepts, performance does not decrease significantly, even for corruption levels as high as
17%. Together, these results demonstrate an ability to learn varied complex, disjunctive, spatiotem-
poral concepts, and a robustness to various noise conditions.

4.2 Predicting the Outcome of Dynamic Actions

With an eye toward learning concepts that predict world dynamics, we also employ a 2D simulated
physical “blocks world” environment.1 We construct a scenario where blocks are dropped randomly
over the table, and occasionally all blocks are cleared to reset the world state. We then label each
state where a block is dropped based on whether the block eventually settles in a state in which
it is supported in some fashion by another block. Figure 3a shows an example world state before
the drop occurs, which is also the state about which the outcome is predicted. Panel b shows the
actual outcome state, which determines the label of this example. Here, the dropped block lands on

1Our simulation, available online at http://code.google.com/p/stackiter/, uses the JBox2D physics engine.
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Figure 3: A positive example (a) from the dynamics data set, labeled according to the resting state
(b), with mean and std AUC for different numbers of training examples (c).

a second block, resulting in apositivelabel. This continuous domain has inherent “noise” in that
simple questions of relative position are insufficient to precisely predict the resting state. As another
complication, the number of distractor objects varies depending on the number of dropped blocks
since the most recent clearing.

For learning, presumably useful mapping functions includelocation, distance, relative location, ori-
entation, block size, and the ratio of block width to height.Functions not expected to be useful
include color and relative color. Figure 3c shows how the number of training examples influences
the quality of learned trees. Given sufficient data, trees predicting this question of world dynam-
ics can be learned, despite its inherent complexity. Learned trees often include either one or two
questions, using only location, distance, and/or relativelocation in the vast majority of cases.

5 Discussion and Conclusion

The SMRF tree learning algorithm must simultaneously identify the objects contained within the
training set graphs that participate in the target concept,along with the set of object and relational
attributes that explain the target concept. The difficulty of this task is increased by the use of dis-
junctive datasets, as the algorithm must identify multiplesub-concepts within each positive graph.
The learning task is made even more difficult by the addition of noise, both in the form of distractor
objects, as well as corruption in the graph labels.

The results on the multi-object structures experiments demonstrate an improvement over the learn-
ing algorithm used in [3], which was only able to learn relatively limited conjunctive concepts. The
learning algorithm presented in this paper is an improvement over the previous version, which main-
tained a hidden variable representation for each instantiation sequence. The use of such a represen-
tation is computationally costly, and leads to sub-optimaltrees in many cases. With no corruption,
the algorithm is able to learn all of the concepts, even with amoderate number of distractor objects
present, with mean AUCs greater than 0.9. As corruption increases, the algorithm demonstrates a
robustness to noise, as classification performance on the easier datasets does not decrease signifi-
cantly, even out to corruption levels of 17%. On the harder datasets, such as RaG/BaY, which are
more sensitive to deviant examples, an increase in the levelof corruption drives down classification
performance rather quickly. Such a trend is not unexpected,and is representative of the degree of
difficulty inherent in the problem itself. The BaG/GaB dataset, on the other hand, does not suffer
significantly from corruption, and this is due to the fact that it is an easier concept than RaG/BaY
because of its inherent symmetry.

In addition, the results on the dynamic action outcome prediction experiments demonstrate an ability
to work towards a solution of a problem that is rooted in real-world physics. This particular domain
features a large search space, and it is encouraging that thealgorithm is able to classify significantly
better than random.

These results indicate that SMRF has a good deal of promise asa method for learning complex spa-
tiotemporal concepts in real-world applications. Furtherwork is under way to enable the application
of SMRF to the domain of Learning from Demonstrations [1], where it would be used to enable a
robotic agent to learn to perform tasks through interactions with human teachers. Such interactions
would be enriched by the use of social cues, such as gestures and linguistic utterances, which would
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be used by the SMRF algorithm to prune the hypothesis space and learn the target concept much
more efficiently and accurately.
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