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Abstract

The real world is composed of sets of objects that have nim&dsional prop-

erties and relations. Whether an agent is planning the nextseaf action in

a task or making predictions about the future state of sonechuseful task-

oriented concepts are often encoded in terms of the compiesaictions between
the multi-dimensional attributes of subsets of these dbj@ad of the relationships
that exist between them. In this paper, we present extemgidhe Spatiotemporal
Multi-dimensional Relational Framework (SMRF) Trees, tadaining technique
that extends the successful Spatiotemporal Relationda®itity Tree models.

From a set of labeled, multi-object examples of some targetept, our algo-

rithm infers both the set of objects that participate in thaaept, as well as the
key object and relational attributes that characterizectivecept. In contrast to
other relational model approaches, SMRF trees do not retét categorical re-
lations between objects to be defined a priori. Instead, lyjarighm infers these
categories from the continuous attributes of the objecatratations in the train-
ing data. In addition, our approach explicitly acknowlesitfee multi-dimensional
nature of attributes, such as position, orientation andrdolthe creation of these
categories. We present an updated learning algorithm ®ISMRF approach,
and validate our updated algorithm in both two and three dsiomal domains
that contain groups of static or moving objects.

1 Introduction and Related Work

The world can be modeled as a collections of objects, eadh aviset of associated attributes.
Whether it is a robot preparing to perform the next step in &itgpsequence or an agent gen-
erating warnings of severe weather, only a specific substteobbservable objects is relevant to
making decisions about what steps to take next. In partictila relevance of an object is deter-
mined by its attributes and the relations that it has witheptbjects. These attributes are often
continuous and multi-dimensional, such as Cartesianipasibr colors in a red-green-blue (RGB)
space. Given a set of training examples, our challenge istwder the objects that play the crucial
roles in the examples as well as the description of the kegablaittributes and relations.



The problem of learning these attributes and relations @ bfrelational learning[8, 12]. Most
relational learning approaches are formulated in termgapblycal models [6, 23, 19], logical for-
mulae [2], or some combination thereof [22, 24]. Our workybweer, focuses on a different method
of solving the problem, utilizing augmented decision tress particular, the SMRF approach is
inspired by the successful Relational Probability TreeT)RR0] and the Spatiotemporal Relational
Probability Tree (SRPT) [18] approaches, which create abdlhy estimation trees [21], a form of

a decision tree with probabilities at the leaves. Splithmdecision trees can ask questions about
the observed properties of the objects or their relatiggsshiGiven a novel graph, these decision
trees estimate the probability that the graph contains afgddjects that corresponds to some target
concept. Like Kubica et al. [14, 13], these approaches buddels using pre-specified categorical
relations.

In this paper, we discuss the Spatiotemporal Multidimemsi&elational Framework (SMRF) [3],
as well as extensions to the original formulation preseimef8], which include a new and im-
proved learning algorithm. SMRF trees extend prior refaloprobability tree approaches in a
number of significant ways. The first extension is the abtlityask questions based on continuous,
multi-dimensional attributes. For example, the color ofx@pcan be represented as a RGB tuple.
Capturing a concept such as “yellow” requires that the blrgable be low but the green and red
variables can take on values almost within their full rangosag as they vary together. While RPTs
and SRPTSs can split on individual continuous variables (gld, 6, 7]), it is desirable to explicitly
acknowledge the fact that multiple dimensions can covaigtaresting ways.

A second key extension made by the SMRF approach is theyabilitefine relational categories dy-
namically. For example, objects may have a position atiildefined within some global coordinate
frame. The decision tree splits can be made within a metacesphat captures the position of one
objectrelativeto another. As with the multi-dimensional object attrilajteplits on these relational
attributes are made using decision surfaces within theiengtace. In contrast, RPTs and SRPTs
ask relational questions using categorical descriptidiseattributes.

A third key extension made by the SMRF approach is the aliitseason explicitly about object
instances. In graph-based approaches (such as RPTs ang)SBRiebjects/relations that satisfy a
particular question are typically not represented in sualaythat they can be referenced by ques-
tions deeper in the tree. This limits the types of concepds ¢hn be easily represented and can
make it difficult to address the questionwhothe actors are that play the key roles in determining
the graph label. We refer to this as a graph-based methodibethe query (a graph representing
objects and relations) descends as a single unit througtiettision tree. In contrast, an instance-
based method (such as SMRF trees) explicitly representsctiveg objects through an instantiation
process. A question at one level in the tree can then refdretsét of objects that have been in-
stantiated to that point. This allows absolute questiositindividual objects or relative questions
about two or more objects to be asked.

In this paper, we provide an overview of SMRF trees, and thsouds an improved learning al-
gorithm, compared to [3]. We then describe experimentsoperdd using the new algorithm and
discuss the implications of their results.

2 SMRF Trees

SMREF trees assess the probability that a given collectioobggcts contains an instance of a par-
ticular target concept. We model these collections of dbjas graphs with attributed objects and
relations. Many relations in our context are defined as atfonof the attributes of the objects. For
example, objects may includepasitionattribute, as defined within some fixed coordinate frame. In
addition, the position of one object may be describaldtive to that of another. Aarget concept
encompasses a subset of objects from an example and enpedé&sattribute values of those ob-
jects and relations between them. Each graph is labeledrees positive or negative on the basis of
whether or not some subset of its objects matches the tazgeept definition.

The learning problem to be solved is: given some number dfipesnd negative graphs, construct
a model that can assess the probability that a given graptaiosrthe target concept [17]. For
instance, a target concept may be “a red object near a grgentdbbWhen, for example, blue
objects are also present in some of the positive graphse#iieihg approach must weigh the set of



possible target concepts, and choose the one that bestrexiia positive graphs. This problem

of having to identify the subset of objects and their reladitips that define a target concept can
be viewed as one ahultiple instance learningMIL) [4, 16, 17], since the label of each graph is

known, but it is unknown which combinations of objects in gnaph encode the target concept.

As an illustration of the classification process, Figure dvahtwo hand-constructed SMRF trees.
Panela shows a very simple SMRF tree that identifies yellow objedise first node in the tree
in panel a dynamically binds objects from the graph to theatde A. This instantiation action
enables SMRF trees to classify graphs based on attribupsstatular objects or relations. Although
the question in the figure is rendered in English, it is atyuatked with respect to a decision
volume represented in RGB space. For RGB variables (as w@lbsitions in Euclidean space), it
is convenient to use an ellipsoidal decision volume. If therg falls within this volume, the object
falls down theYesbranch of the question node. If the query falls outside tHeme, the object falls
down theNo branch. If the object has no color attribute, it falls dowa Error branch.

Question: absolute color
Is A ~ "Yellow"?

Question: absolute color
Is A ~ "Yellow"?

Question: absolute color
Is B ~ "red"?

Question: relative location
Is B ~ "near" A?

Yes

m "
Yellow
g @

Red
5

leaf 5
98%

leaf 6
1.0%

leaf 7
0.0%

(b) (c)
Figure 1. (a) A hand-crafted SMRF tree that identifies yeltmvjects. Although we describe the
decision tree split with a categorical label (“yellow”)gtboncept is represented as a volume in RGB
space. (b) A tree that identifies yellow objects that are rehobjects. (c) A set of objects scattered
on a plane.

Leaf nodes represent a probability function over membpristthe target concept. In this example,
yellow objects are the most likely examples of the targeteph When this tree is used to classify
the set of objects shown in Figure 1(c), A is instantiatechveiach object in turn. Here, objects
1 and 4 fall into the Yes branch leaf node, and are assignedkapility of 98% of being in the
target concept, as calculated from the training data. Eid(n) shows a more complicated example
that identifies a yellow object near a red object. At the rdots instantiated with each object in
the graph. Following the yes branch, B is instantiated wieeond object drawn from the graph.
The tree then asks whether B is red and, if so, examines thgveeposition of A and B. In this
example, the position of A is measured within a coordinadeni whose origin is defined by the
position of object B. We refer to a specific ordered list oftamgiations (e.g., A=1and B = 2) as
aninstantiation sequencd he variables are implicit in the order of the sequence.example, the
set of instantiation sequences that is expanded and sudgggaorted by the tree in Figure 1(b)



for the objects in Figure 1(c) is: leaf 1: (2), (3), (5), leaf@3, 2), (1, 4), (4, 2), (4, 1), leaf 5: (4,
3), and leaf 6: (1, 3), (1, 5), (4, 5). An instantiation seqeethat is expanded into a set of longer
instantiation sequences is calleparent and the set of expanded sequences is calledhhéren
Because instantiation sequence (4, 3) falls into a leaf gl lprobability, the graph is labeled as
likely to contain an instance of the target concept. Furtioee, the tree identifies objects 3 and 4 as
the key actors. Note that not all combinations of object®tations are considered during the query
process because the tree structure enables the searchispaaguickly pruned. In Figure 1(b), we
only instantiate B objects in the cases where A satisfiesytkotv” model.

The SMRF approach allows complex questions to be definedrimstef the multidimensional at-
tributes of the objects in the training data. While a decisiorface in a multidimensional space can
be represented in a variety of ways, we choose to define théenns of three components:

e amapping functiony, which computes some quantity over some subset of the ettstof
some subset of the objects in an instantiation sequence,

e apdfp(e|d), defined over the codomain of the mapping function, and

e adecision threshol@®, which determines the sorting at the question node.

A mapping functioomaps an instantiation sequence to a value in a metric span&ping func-
tion selects some number of objects out of an instantia@gusnce, and performs some numeric
operation on their attributes. For instance, a mappingtfanenight compute the relative distance
of the spatial locations of the first and third objects in th&tantiation sequence. Another mapping
function might compute the relative difference of the cdtiributes of the first and second objects
in the sequence. A third mapping function might simply rettive value of the location attribute of
the fourth object in the sequence.

For defining a decision boundary in Euclidean spaces, thess&au distribution is a convenient
choice of pdf. Combined with a likelihood threshold, thidides an ellipsoidal volume in the space;
points falling within this volume are considered as satigfjthe question. The representative power
of the SMRF approach is found in the different possible magpunctions that are available, and
the ability to create an appropriate decision volume basetthe training data. If, for example, the
distance between two objects is a central part of the tastept, the mapping function allows
the distance relationship to be expressed, and the pdkbla pair allows the appropriate distance
between the objects to be modeled from the training data.

Formally, in the classification process, a question nodepttesp(¢(1)|0) for each instantiation

sequencd sorted to that node. For eaéhif p(¢(7)|f) < O, I is sorted down the No branch. If
p(¢(I)|0) > O, I is sorted down the Yes branch.dfI) is undefined for (e.g., if¢ is defined over

an attribute that the objects indo not possess), thenis sorted down the Error branch.

3 Learning Algorithm

The objective of our SMRF tree learning algorithm is to grotre@ that accurately predicts the label
of new graphs. A SMRF tree probabilistically classifies agpgras containing the target concept
based upon the probability of the highest-probability ieadle into which an instantiation from the
graph in question is sorted. Because graphs are probatailigtclassified, the algorithm seeks to
build a tree that will maximize the likelihood of correct gtaclassification over a training set. The
likelihood of correct classificatiofiL) is defined as follows:

L= ( 11 Pr(W(G))) X < I] @ —Pr(W(G)))), (1)

GeGt GeG—

whereG™ andG~ denote the set of positive and negative graphs, respectaed)V(G) denotes
the highest-probability leaf in the tree into which an imsiation sequence from graggh is sorted.

In addition, Pi(7) denotes the probability value that Idafssigns to instantation sequences that reach
it. The likelihood of the data given the tree is thus higheewmstantiation sequences from positive
graphs are sorted into leaf nodes with a high probabilitgl,lawer when no instantiation sequences
from a positive graph are sorted into a high-probability.|&4e likelihood of the data is also higher
when no instantiation sequences from negative graphs aedsato high-probability leaves, and
lower when at least one such instantiation sequence igkioittea high-probability leaf.



Learning a tree that maximizes for a given dataset is an iterative multi-step process. @n th
initial iteration, the learning algorithm begins with aubt — a trivial tree comprised of only a root
node and a single leaf node. The tree is then repeatedly gaoaording to the following greedy
algorithm:

1. A set of leaf nodes is chosen for possible expansion.
2. For each leaf node to be expanded:

(a) A set of possible expansions is sampled, resulting it efsandidate trees.
(b) For each candidate tree:
i. The parameters of each question node model are optimized.
ii. A decision threshold in likelihood space is chosen.
iii. The tree leaf node probabilities are re-computed.

3. The candidate tree with the greatest improvemerit t® identified. If the improvement is
statistically significant, it replaces the current tree tredalgorithm begins again at step 1.
Otherwise, the algorithm halts.

The details of the above operations are explained in moegal detiow.

Choosing Leaves for Expansion In order to make the algorithm more efficient, only a subset of
the available leaves are considered for expansion. Totsiledeaves to expand, the algorithm
scores each of the leaves, and selectsithghest-scoring leaves above a minimum threshold. In
this work, n was empirically set to three. Each leaf is scored accordingoiv muchZ would
improve if the leaf were to be replaced by an optimal expanmsio

Generating Candidate Trees The expansion process replaces a leaf node in the tree wattiialp
tree, called aexpansionAll legal expansions contain one question node, whichlmagstleaf nodes
as children (on its Yes, No, and Error branches, respegjiv€lome legal expansions also include
one or more instantiation nodes above the question node eXjrension process thus enables the
tree to ask a new question about previously instantiateglctdyjabout new objects, or incorporating
both. Each candidate question node is determined by its imgfynction. Each mapping function
is associated with a particular pdf, such as a Gaussian dvhges distribution. The pdf parameters
and decision threshold are learned later in the algorithm.

A number of mapping functions are defined, allowing the leggyalgorithm to ask a variety of types
of questions. “Absolute” mapping functions simply retuhe tvalue of an attribute at a particular
position in the instantiation sequence. For example, a mggpnction might return the location of
the third object in the instantiation sequence. “Relatiwelpping functions return the (vector) dif-
ference between the values of a particular attribute fordifferent objects. For example, a mapping
function might compute the vector difference in RGB spadeben the second and third object of
the instantiation sequence. Mapping functions that compu Euclidean distance between two
attribute values are also defined.

For each leaf node selected for expansion, a number of catedketpansions are individually applied
to the tree, resulting in a set of candidate trees. Each dataliree is then optimized according to
the following procedures.

Optimizing Question Node Models For a given candidate tree, the parameters of the pdf at the
expansion question node are optimized so as to capture thataf the mapping function for the
“best” instantiation sequences. Each instantiation secpis given a weighting, and the maximally-
weighted instantiation sequences from each positive gaaplused to estimate the model parame-
ters.

Models are learned using an iterative process. An initiadlehavith parameters, is selected based
on a point of maximal diverse density [15]. Based on the cumgodel, each instantiation sequence
I atiterationt is assigned a weighi, (1), which is equivalent tg(¢(7)|0;). New model parameters
0:+1 are estimated to maximize the following likelihood:

G
9t+1 H (o \9t+1))wtuw ), )

GeG+



where & denotes the highest-weighted instantiation sequence fahthe question node being
optimized. This process is repeated uititonverges.

Computing Decision Thresholds Once the final parameteég of the pdf model have been de-
termined, a decision threshold is computed to determine thewnodel will sort instantiation se-
guences. Following Friedman (1977) [5], we use the pointaimum Kolmogorov-Smirnov (K-S)
distance betweepn(4(15)(6,)'s of the positive graphs and thgg(15)|6,)’s of the negative graphs
as the decision boundary. After determining the paramefettee question node model, the instan-
tiation sequences are sorted into the appropriate chifdhtedes.

Computing Leaf Node Probabilities The last step of the optimization procedure is to compute
tree leaf node probabilities that maximiZefor the current sorting. This task is made difficult
given that the value of. is determined by a series of relatethx operators. However, we can
see that if a leaf is the maximum-probability leaf fop positive graphs ana negative graphs,
the probability assignment that maximizés contribution to the overall likelihood. is n%p (the
intuitive frequentist value). We can therefore maximize twerall likelihood through the following
process: The ratieni—p is computed for each ledf The maximum such ratio is assigned as the
probability for its corresponding leaf. The process is tleggeated, with new andn counts ignoring
the graphs sorted to leaves that have already been assigrtEbjities. Once all graphs have been
removed from consideration, any remaining leaves are @agigrobabilities of 0.

Evaluating Statistical Significance Over the set of candidate expansions, the best performing
candidate tred’. is considered as a replacement for the current tree. If thig inee performs
significantly better than the current tree according to alilfood ratio test, then this replacement
is kept. Because the sample size is reasonably largelog ﬁ is approximatelyy? distributed

with degrees of freedom equal to the difference in the nurob@arameters in the candidate tree
and the current tree [9]. The number of parameters in thagitbe number of leaf and instantiation
nodes, plus the sum of the number of distribution paramétezach question node. To compensate
for the multiple comparisons problem, we emplogidak correction to obtain a collective cutoff of
a =0.1[10].

4 Experimental Results

Through the following experiments, we demonstrate five keperties of the proposed learning

approach. First, that the learning algorithm is able to toies an appropriate model for grounding

a particular target concept. Second, that the algorithmcoastruct complex target concepts con-
sisting of multiple questions. Third, that the algorithnmdand an appropriate target concept even
when “distractor” objects are present. Fourth, that thertigm can be robust to noise in the labels
of the training examples. And fifth, that the algorithm caarfedisjunctive concepts. The algorithm

was tested with six problems: five involving the classificatof multi-object structures and one

involving the prediction of the outcome of actions in a dyi@environment.

4.1 Multi-Object Structures

The following datasets were utilized to test the ability loé algorithm to classify conjunctive and
disjunctive spatial concepts:

a blue object above a green object (BaG),

a blue object above a green object, or a green object ablolve abject (BaG/GaB),
a red object above a green object, or a blue object aboviboavyabject (RaG/Bay),
a red object or a green object (R/G),

an object oriented to the left, or an object oriented taritpiet (L/R).

agrwONE

With the exception of the last dataset, all were comprisaabggcts with two attributes3D position
andRGB color The last dataset was comprised of objects with three at&$h2D position RGB
color, and2D orientation All of the datasets were computer-generated.
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Figure 2: Mean and std AUCs for the five datasets.

A number of mapping functions were provided to the algorittor the 3D (2D) position attribute,
the algorithm could choose to model the absolute locatioarobbject inR? (R?), the distance
between the object locations, or the difference vector betwtwo objects iR? (R?). The pdfs
used for these models were Gaussian distributions of threg imensions. For the color attribute,
the algorithm could choose to model either the RGB color oingle object, or the difference
vector in RGB space between the colors of two objects. Thdfewere also Gaussians of three
dimensions. For 2D orientation, the algorithm could chaos@odel the absolute orientation of an
object in angular coordinates. The pdf for this model wasraMases distribution.

For these data sets, 100 positive example graphs and 10fveegieample graphs were generated,
according to the specific target concept involved. For ingirand testing the algorithm, 10-fold
cross-validation was employed. SMRF trees do not definitidgsify a graph as containing or
not containing a target concept, but rather return the gitibathat the graph contains the target
concept. For this reason, classification performance wasuned in terms of the receiver operating
characteristic (ROC) curve, and the area under this curl&(jA

The results of these experiments are shown in Figure 2. Wielget concepts are complex in their
own right, distractor objects were also added to test thityabi the learning algorithm to infer
the target concept under more difficult conditions. In ddditto test the robustness of the learning
algorithm under other noise conditions, the labels of soaregntage of randomly-chosen examples
in the training set were inverted (from positive to negatimevice-versa).

These results indicate that the algorithm is able to learange of complex and disjunctive spa-
tiotemporal concepts, involving such varied attributedoasition, color, and orientation. In par-

ticular, such concepts can be learned to a high degree ofamcin the no corruption case, even
with a moderate number of distractors present, as seen umd=&{b). As the amount of corruption

increases, classification performance for the harder g@isakecreases. However, for most of the
simpler concepts, performance does not decrease sigtificewen for corruption levels as high as

17%. Together, these results demonstrate an ability to lsmied complex, disjunctive, spatiotem-
poral concepts, and a robustness to various noise conglition

4.2 Predicting the Outcome of Dynamic Actions

With an eye toward learning concepts that predict world dyica, we also employ a 2D simulated
physical “blocks world” environmeritWe construct a scenario where blocks are dropped randomly
over the table, and occasionally all blocks are clearedgetrihe world state. We then label each
state where a block is dropped based on whether the blockuatnsettles in a state in which

it is supported in some fashion by another block. Figure avshan example world state before
the drop occurs, which is also the state about which the outcig predicted. Panel b shows the
actual outcome state, which determines the label of thimpl@ Here, the dropped block lands on

1Our simulation, available online at http://code.google.com/p/stackiter/, usd8&tx2D physics engine.
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Figure 3: A positive example (a) from the dynamics data sékled according to the resting state
(b), with mean and std AUC for different numbers of trainigueples (c).

a second block, resulting in@ositivelabel. This continuous domain has inherent “noise” in that
simple questions of relative position are insufficient teqisely predict the resting state. As another
complication, the number of distractor objects varies delpgy on the number of dropped blocks
since the most recent clearing.

For learning, presumably useful mapping functions inclledation, distance, relative location, ori-
entation, block size, and the ratio of block width to heighunctions not expected to be useful
include color and relative color. Figure 3c shows how the ne@nof training examples influences
the quality of learned trees. Given sufficient data, treeslioting this question of world dynam-
ics can be learned, despite its inherent complexity. Lehtrees often include either one or two
guestions, using only location, distance, and/or reldtieation in the vast majority of cases.

5 Discussion and Conclusion

The SMRF tree learning algorithm must simultaneously idigihe objects contained within the
training set graphs that participate in the target con@dphg with the set of object and relational
attributes that explain the target concept. The difficultyhis task is increased by the use of dis-
junctive datasets, as the algorithm must identify multgié-concepts within each positive graph.
The learning task is made even more difficult by the additiomaise, both in the form of distractor
objects, as well as corruption in the graph labels.

The results on the multi-object structures experimentsahetnate an improvement over the learn-
ing algorithm used in [3], which was only able to learn redely limited conjunctive concepts. The
learning algorithm presented in this paper is an improvermesr the previous version, which main-
tained a hidden variable representation for each instéortiiaequence. The use of such a represen-
tation is computationally costly, and leads to sub-optitreds in many cases. With no corruption,
the algorithm is able to learn all of the concepts, even withoalerate number of distractor objects
present, with mean AUCs greater than 0.9. As corruptioreases, the algorithm demonstrates a
robustness to noise, as classification performance on 8ieretatasets does not decrease signifi-
cantly, even out to corruption levels of 17%. On the hardéaskts, such as RaG/BaY, which are
more sensitive to deviant examples, an increase in the ¢é\e@rruption drives down classification
performance rather quickly. Such a trend is not unexpeeted,is representative of the degree of
difficulty inherent in the problem itself. The BaG/GaB d&g®n the other hand, does not suffer
significantly from corruption, and this is due to the facttthhas an easier concept than RaG/BaY
because of its inherent symmetry.

In addition, the results on the dynamic action outcome ptexi experiments demonstrate an ability
to work towards a solution of a problem that is rooted in ieaHd physics. This particular domain
features a large search space, and it is encouraging thalgthethm is able to classify significantly
better than random.

These results indicate that SMRF has a good deal of promisergthod for learning complex spa-
tiotemporal concepts in real-world applications. Furtlverk is under way to enable the application
of SMRF to the domain of Learning from Demonstrations [1].endit would be used to enable a
robotic agent to learn to perform tasks through interastiwith human teachers. Such interactions
would be enriched by the use of social cues, such as gestuddimguistic utterances, which would



be used by the SMRF algorithm to prune the hypothesis spatéeam the target concept much
more efficiently and accurately.
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