
Learning to Predict Action Outcomes

in Continuous, Relational Environments

Thomas J. Palmer, Matthew Bodenhamer, Andrew H. Fagg

Symbiotic Computing Laboratory, University of Oklahoma, USA

tompalmer@ou.edu, mbodenhamer@ou.edu, fagg@cs.ou.edu

Abstract—We present a method for predicting action outcomes
in unstructured environments with variable numbers of partici-
pants and hidden relationships between them. For example, when
pouring flour from a cup into a mixing bowl, important relations
must exist between the cup and the bowl. The action Pour(x, y)
might depend on the precondition Above(x, y). How well the
predicate Above actually predicts action success often depends
on complicated world dynamics and perhaps other objects in
the scene. While such predicates are commonly hand-crafted, we
present in this paper a method for learning physically grounded
predicates directly from the continuous data. In this manner,
an agent’s own developmental experience can drive its world
representations. Here, we learn such representations as ensem-
bles (or forests) of probability trees using the Spatiotemporal
Multidimensional Relational Framework (SMRF). By reasoning
about individual objects, SMRF trees allow us to focus attention
on action parameters while still considering other objects in a
scene. We demonstrate our method on three simulated problems.
Two are in a blocks world with gravity: one predicting the
tipping direction of a balance scale, inspired by Siegler’s classic
cognitive psychology work, and the second predicting the success
of dropping one block on another. The third problem predicts
the success of passing a ball in a soccer domain. In these tasks,
we show an ability to scale prediction to scenes with more objects
than are present in the training data.

I. INTRODUCTION AND RELATED WORK

The real world consists of far more variables than an

intelligent agent can possibly model. Therefore, some form of

abstract representation is vital. One approach is to represent an

environment as a set of objects, each with its own attributes.

This still leads to a vast space for consideration, especially if

relationships between objects are important. Furthermore, on

different occasions, certain roles might be played by different

individual objects. A developing child or robot cannot expect

to optimize decisions in the full space. Selective attention

and higher-level concepts provide potential building blocks for

performing tasks in a complex world.

For example, a robot working in an unstructured kitchen

needs to avoid obstacles, retrieve items, open containers, and

combine and mix ingredients, among other activities. In these

tasks, each action involves only a subset of the objects in

the environment. When pouring flour into a bowl, the relative

positions of the bowl and measuring cup are important. The

pouring edge should be approximately centered above the

bowl, although not too high. Other nearby objects might also

interfere, but the exact locations of items on the spice shelf

are probably irrelevant. Some attributes of key objects also

are likely irrelevant, such as the color of the bowl. For the

objects and attributes that do matter, rather complicated world

dynamics are at play, including gravity and the dispersion of

flour in the air. The robot’s own developmental experience can

help it to form the concepts needed to successfully perform

tasks such as these.

Learning world dynamics can mean the ability to predict

any aspect of the future world, whether that be full world

state, a subset of state variables, or expected reward. In our

present work, we are primarily concerned with predicting

the success or failure of agent actions, as this ability can

form the component of a higher-level planning or learning

system. As an example of such a planner, Stulp et al. [1] learn

position boundaries that predict success or failure of actions

such as robotic grasping of objects on a table. Identification of

probable action success can also be viewed as a form of affor-

dance [2]. Stulp et al., however, do not address the learning of

relations for arbitrary numbers of objects, except in certain ad

hoc fashions. Many other recent works also address learning

consequences of agent actions in continuous, multidimensional

domains, often predicting detailed world state (e.g., [3], [4],

[5]). Again, however, such works commonly avoid arbitrary

object relationships.

For addressing relational concerns, logical formulations are

a common and traditional technique. Such representations are

frequently purely discrete or, perhaps, include one-dimensional

continuous attributes. Learning in such domains is also well

established [6], [7], [8]. This includes the general field of

relational reinforcement learning (RRL) which adapts rein-

forcement learning (RL) techniques to such relational, logical

domains and representations [9]. However, when applied to

multidimensional continuous attributes, a majority of these

approaches depend on hand-crafted predicates. For example, a

predicate for Above(x, y) might help in predicting the outcome

of agent actions such as Pour(x, y). This requires manual ef-

fort and may fail to consider the specific requirements of such

concepts in a highly detailed and unstructured world. Among

relational learners supporting continuous attributes, the TILDE

algorithm [10] makes use of entropy-based discretization. This

has been employed recently for feature learning in RL [11] and

imitation learning [12] contexts, but only for one-dimensional

domains or for one-dimensional attributes (e.g., angles and

distances).

Some approaches combine relational and multidimensional,

continuous learning of world dynamics. These include Ver-

bancsics and Stanley [13], who evolve neural networks capable



of learning physical relationships given a grid-based world

representation of somewhat flexible resolution. With this rep-

resentation, among other test domains, they learn to play a

2D simulated soccer keep-away game [14], scaling to more

players in test than in training, even before additional learn-

ing. Another example of combined continuous and relational

dynamics learning is that of Xu and Baird [15], who learn

separate continuous and relational models using a form of

case-based reasoning and allow interaction between the two

models using human-defined predicates.

In our work, we address relational learning in multidimen-

sional continuous spaces using the Spatiotemporal Multidi-

mensional Relational Framework (SMRF) of Bodenhamer et

al. [16], [17]. Given a set of training scenes, each labeled as

containing some target concept or not, the SMRF algorithm

learns a relational probability tree that identifies the key

objects in the scenes and the multidimensional continuous

attributes of the objects and relations between them. The goal

is to discover what is in common about each scene containing

the target concept, but does not occur in the negative scenes.

We use this capability here to determine the probability

of binary outcomes of world dynamics, including those of

parameterized actions.

SMRF also includes the ability to explicitly reason about

specific object instances. This is not common to all relational

decision tree approaches (e.g., [18], [19]). Like Džeroski et

al. [20], we use this capability to focus attention on action

parameters. In the Pour(x, y) example, x and y identify

certain participant objects in each use (or potential use) of

this action.

Another key aspect of our work is that the SMRF learn-

ing algorithm is stochastic. Repeated training runs produce

a variety of trees. Such variety can increase generalization

accuracy [21]. Given an ensemble (or forest) of SMRF trees,

we apply the forest to new scenes to predict binary outcomes.

In this way, the trees form a basis for representing the world

and its dynamics.

In the remainder of this paper, we describe our method,

including the SMRF algorithm and our application of it for

world outcome prediction. We then show results for three

different problems in 2D simulated physical worlds.

II. METHOD

Real-world physical relations are originally implicit in con-

tinuous, multidimensional data, and predicting action out-

comes depends on detailed issues of world dynamics. We

present a method for predicting binary outcomes of actions in

such continuous, relational worlds. The core of our approach is

based on Spatiotemporal Multidimensional Relational Frame-

work (SMRF) trees [16], [17], and we begin with an overview

of this algorithm. We then address the use of action parameters

within the SMRF framework and how a forest of SMRF trees

forms a basis to learn outcome prediction in new situations.

A. SMRF Trees

SMRF trees assess the probability that a given collection (or

scene) of objects contains an instance of a particular target

Instantiate x

Red(x)?

AtOrigin(x)?

Yes

Instantiate y

No

Leaf 
 0.0

Error

Leaf 
 0.99

Yes

Leaf 
 0.01

No

Leaf 
 0.0

Error

Near(x,y)?

Leaf 
 0.01

Yes

Leaf 
 0.98

No

Leaf 
 0.0

Error

Fig. 1. Hand-crafted SMRF tree encoding a disjunctive concept that identifies
either a red object at the origin, or an object that is not red and not near to
another object. Predicates such as Red and Near are defined in terms of
decision volumes in the RGB color and distance metric spaces, respectively.

concept. As shown in Fig. 1, a SMRF tree is composed of

several node types. Instantiation nodes, shown as parallelo-

grams, bind an object from a scene to a variable. An ordered

sequence of such bindings is called an instantiation sequence.

Question nodes, shown as ellipses, sort instantiation sequences

down various branches of the tree, based on the attributes of

the objects in that sequence. Leaf nodes, shown as rectangles,

give the probability of membership in the target concept for

instantiation sequences arriving there. The probability that

a scene contains an instance of the target concept is the

highest probability assigned to any instantiation sequence from

the scene. In this way, SMRF trees resemble existentially

quantified logical expressions. For example, the SMRF tree in

Fig. 1, given some probability decision threshold, is equivalent

to the following first-order logic expression:

∃x
[

(Red(x) ∧ AtOrigin(x)) ∨

(¬Red(x) ∧ ∃y [¬Near(x, y) ∧ x 6= y])
]

.

In SMRF, each object has attributes that can be multidimen-

sional and continuous. Relations are implied as functions of

attribute values. For example, objects may include a position

attribute, as defined within some fixed coordinate frame. In

addition, the position of one object may be described relative

to that of another. Each object also has a distinct identity,

and subsequent instantiations down a branch of a tree do not

repeat objects earlier in the sequence (hence, x 6= y in the

example). Such sequential instantiations produce permutations

of the objects. These are pruned, however, by the question

nodes between them. Often, only a small subset of earlier

instantiation sequences filter down to branches with additional

instantiation nodes.



The SMRF approach allows complex question node models

to be defined in terms of the multidimensional attributes of

the objects in the training data. While a decision surface in

a multidimensional space can be represented in a variety of

ways, we choose to define them in terms of three components:

• a mapping function, φ, which computes some quantity over

a subset of the attributes of a subset of the objects in an

instantiation sequence,

• a pdf p(•|θ), defined over the codomain of the mapping

function, and

• a likelihood threshold Θ, which determines the sorting at

the question node.

A mapping function maps an instantiation sequence to a value

in a metric space. It does this by selecting some number of

objects out of an instantiation sequence, and performing a

numeric operation on their attributes. For instance, a mapping

function might compute the relative difference of the color

attributes of the first and second objects in the sequence.

Another mapping function might simply return the value of

the location attribute of the fourth object in the sequence.

For defining a decision boundary in Euclidean spaces, the

Gaussian distribution is a convenient choice of pdf. Combined

with a likelihood threshold, this defines an ellipsoidal volume

in the space; points falling within this volume are considered

as satisfying the question. For 2D orientation, we use a von

Mises distribution [22]. The representative power of the SMRF

approach is found in the different possible mapping functions

that are available, and the ability to create an appropriate

decision volume based on the training data. If, for example,

the distance between two objects is a central aspect of the

target concept, a “distance” mapping function allows this

relationship to be expressed, and the pdf/threshold pair allows

the appropriate distance between the objects to be modeled

from the training data.

Formally, in the classification process, a question node

computes p(φ(I)|θ) for each instantiation sequence I sorted to

that node. For each I , if p(φ(I)|θ) ≥ Θ, then I is sorted down

the Yes branch. If p(φ(I)|θ) < Θ, I is sorted down the No

branch. If φ(I) is undefined for I (e.g., if insufficient objects

exist for instantiation or if an attribute used by φ is absent),

then I is sorted down the Error branch.

B. SMRF Tree Learning Algorithm

The objective of the SMRF tree learning algorithm is to

grow a tree that accurately predicts the label of novel object

scenes. Because scenes are probabilistically classified, the

algorithm seeks to build a tree that maximizes likelihood over

the training set. The likelihood (L) of a tree given the training

data is defined as follows:

L =

(

∏

S∈S+

Pr (W(S))

)

×

(

∏

S∈S−

(1− Pr (W(S)))

)

, (1)

where S+ and S− denote the set of positive and negative

scenes, respectively, labeled based on whether or not they

contain an instance of the target concept. W(S) denotes the

highest-probability leaf in the tree into which some instan-

tiation sequence from scene S is sorted. Pr (l) denotes the

probability value that leaf l assigns to instantiation sequences

that reach it.

The SMRF learning algorithm expands one leaf at each

iteration. Each expansion includes zero or more instantiation

nodes followed by one question node. Due to the size of the

search space, mapping functions and initial pdf parameters

are sampled from the available set. The best expansion is

accepted if it passes a likelihood ratio test [23] with Šidák

correction [24] for the repeated expansion attempts.

The construction of decision volumes (which consist of a

pdf and likelihood threshold) is perhaps the most unique aspect

of the SMRF learning algorithm, from a relational learning

perspective. In a given expansion, the sampled mapping func-

tion φ under consideration (e.g., relative position), transforms

tuples of objects from the current instantiation sequences into

points in some metric space. Each positive or negative scene

(from S+ or S−, respectively) contributes an unordered set

of such points. As SMRF addresses existential questions, we

wish to find the volume within this metric space containing

at least one point from as many positive scenes and from

as few negative scenes as possible. This topic has been well

addressed in the multiple instance learning (MIL) literature,

and we initially rank sampled volume centers using the diverse

density metric of Maron and Lozano-Pérez [25]:
(

∏

S∈S+

max
I∈IS

Pr (φ(I))

)

×

(

∏

S∈S−

(

1− max
I∈IS

Pr (φ(I))

)

)

,

where IS denotes all instantiation sequences from scene S

and Pr (φ(I)) refers to the probability volume center and

shape under consideration. Volume covariance is initialized

based on the covariance of points from all positive scenes.

All pdf parameters are then refined iteratively in a fashion

inspired by expectation maximization (EM) [26], using only

one point at maximum pdf density from each positive scene.

Following from Friedman [27], we determine the pdf threshold

Θ by the point that maximizes the Kolmorogov-Smirnov (KS)

distance of positive and negative scenes, again counting only

one point per scene. Once the decision volume is in place, the

instantiation sequences are sorted accordingly, and the leaf

node probabilities are assigned.

Bodenhamer et al. [16], [17] present further details of this

tree learning algorithm.

C. Parameterized Actions

We apply SMRF to the learning of outcomes for parameter-

ized actions. When learning the outcomes of such actions, we

include in each training scene, not only the world state, but

also the arguments of the action. For the Pour(x, y) example,

training samples include the identification of x (the thing being

poured from) and y (the thing being poured into).

To use this information when learning SMRF trees for a

k-ary action, we constrain the objects selected for the first

k instantiation nodes of any branch in the tree, in a fashion



−15 −10 −5 0 5 10 15

0

5

10

15

20

8 10 12 14 16
0

5

10

15

−10 −5 0 5 10−10

−5

0

5

10

(a) (b) (c)

Fig. 2. Example starting states for the three tasks evaluated. The balance scale (a) tips either left or right, where we label left as true. The DropOn(x, y)
action (b) is successful if dropped block x comes to rest anywhere above y, here the elongated horizontal (cyan) block. The keep-away Pass(x, y) action
(c) is successful if the “keepers” (yellow) retain possession of the ball (white) after the pass from x (here, lower left) to y (lower right).

similar to the action argument binding of Džeroski et al. [20].

When predicting the outcomes of the same action in future

situations, we again bind the action arguments to the first k

instantiation nodes. Any additional instantiation nodes produce

permutations of other objects in the scene per standard SMRF

evaluation. For example, if the SMRF tree in Fig. 1 were for

some action Act(x), x would only be bound to the action

argument, but all remaining objects could be bound to y.

D. Forest-Based Classification

Because question node expansions are sampled, tree growth

is a stochastic process. Therefore, while each SMRF tree yields

probabilities from a fixed set of leaves, multiple SMRF trees

together, all learned for the same classification task, provide a

richer representation. Ensemble techniques (aggregating indi-

vidual classifiers) have also been shown to improve accuracy

when applied to new data [21].

The existential nature of SMRF concepts is another reason

to use multiple trees. Sometimes absence, rather than exis-

tence, is what determines action success. For example, passing

a ball in soccer is likely to be successful if no opponent

is between the passer and receiver. Such negative existential

concepts depend on universal quantification. For instance,

¬∃xT (x) is logically equivalent to ∀x¬T (x). Because SMRF

currently has no support for universal quantification, we in-

stead learn trees for both the original and negated labels.

Therefore, to predict world outcomes, we learn a set of n

trees, each using a subset of data sampled from an original

training set. Half of the trees are learned using the original

labels and half using negated labels. Each tree provides a

predicted probability of outcome for a scene. We can thereby

transform any domain state of arbitrary dimensionality (refer-

ring to objects and their attributes) into a new abstract state

s ∈ [0, 1]n. An aggregate classifier can then be learned on new

scenes converted into n-dimensional vectors. Specifically, we

use support vector machine (SVM) classification because it

is effective and has readily available implementations, such

as LIBSVM [28]. For the present work, we use only discrete

classification from LIBSVM, although it and other techniques

are also able to provide probability estimates, a capability that

might be valuable for more advanced applications.

III. EXPERIMENTAL RESULTS

Here, we present results for three problems: two in a 2D

simulated physical blocks world and one in 2D simulated

soccer. SMRF has been applied to concept learning in 3D

domains as well [16], [17]. In all experiments, we provide the

following mapping functions to SMRF: absolute and relative

position, distance, reframed position (translated and rotated

according to the location of two other objects), scaled reframed

position (scaling the coordinate frame such that one unit

is between the reference objects), absolute orientation, size,

elongation, and individual and relative color. Some of these

fit more naturally to some tasks than others.

All data sets consist of between 560 and 1000 total scenes,

depending on the task, and we subsample 500 scenes without

replacement for all SMRF and SVM training sets. For each

task, we learn 50 SMRF trees with original labeling and 50

with negative labeling. This gives us a core set of learned

representations. To observe variance resulting from the set of

trees learned, we then subsample 25 positive and 25 negative

trees, and perform 10-fold cross validation with LIBSVM

using a second data set. We perform SMRF tree subsampling

and SVM cross-validation 100 times. For the SVM, we use

a linear kernel. Within each training set, we choose the

SVM cost parameter C by means of internal 10-fold cross-

validation, evaluating options for C by powers of 10. Our

performance measure, which also drives the choice of C, is

the Peirce Skill Score (PSS) [29], which yields 1 for perfect

classification, 0 for random guessing, and -1 for perfectly

incorrect classification. This metric penalizes a model for

merely guessing the most frequent class. We base each PSS

value on aggregate results across the 10 test folds.

A. Blocks World

We first demonstrate our method on two tasks in a simulated

blocks world built using the JBox2D physics engine [30]. This

world is governed by a hidden gravity vector. For both tasks,

no agent actions occur after each initial state. Only gravity

and collisions affect the outcome.



−10 −5 0 5 10
0

5

10

15

20

−2.4

−1.8

−1.2

−0.6

0.0

0.6

1.2

1.8

5 10 15 20
0

5

10

15

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

−10 −5 0 5 10−10

−5

0

5

10

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

2.0

(a) (b) (c)

Fig. 3. SVM decision values showing sample evaluations for the three experimental tasks, where value 0 is the decision boundary. For the balance scale
(a), the value is for the scale tipping left rather than right, if a new block is added centering on the given location. DropOn(x, y) (b) shows the value for
different drop locations of x. Pass(x, y) (c) shows the value for attempting to pass to a player y at the given location.

The first of these two experiments is inspired by Siegler’s

classic developmental cognitive psychology work on human

learning of rules for predicting the outcome of placing a set

of weights on a balance scale [31]. The dynamics question

is whether the spatially distributed weights will cause the

scale to tip left, tip right, or remain balanced. This task

focuses on an unstable world state rather than a parameterized

agent action, although similar active tasks could be imagined.

Also, while SMRF’s capabilities are different than Siegler’s

proposed human rules, this task still provides an interesting

case for comparison between human developmental learning

of world dynamics and that of our method.

Here, we simplify the problem to whether the scale tips

left or right, and do not consider balanced cases. An example

initial state is shown in Fig. 2(a). We construct each initial

scene with one to four randomly placed weights of equal

size and mass along the horizontal beam. Weights that would

otherwise overlap are stacked upward, approximately centered

above the base of the stack. The constant-sized balance scale is

always at the same location, and, while it clearly affects world

dynamics, we leave it out of the scene description because it

is constant. The absolute positions of weights directly indicate

whether they are to the left or the right side.

To predict tipping left or right, learned SMRF trees com-

monly focus on the positions of the weights. For example,

weights to the left suggest tipping left. Absolute position is

indeed the most common mapping function in learned trees for

this task. However, such weights cannot always be considered

in isolation. With a small number of weights present, SMRF

uses error branches, where failures to instantiate imply that

there must be no counterweight on the opposite side. Relative

mapping functions, especially distance, also appear in the

trees. With more weights, high vertical positions imply large

stacks, a heuristic perhaps usable by humans in approximate

counting. Such issues are somewhat visible in the “heat map”

shown in Fig. 3(a). Also, note that, as all training scenes

involve blocks properly stacked on the scale, no strict dis-

tinctions have been learned for areas outside such conditions.

The narrow horizontal bands are indicative of the constant size

of the weights. Only certain vertical positions appear in the

data. Overall, the learned trees are effective for the learning

scenario, and our method performs nearly perfectly in this

task.

Our second blocks world task is for an agent action,

DropOn(x, y), where block x is dropped on support block

y. This action is considered successful if the dropped block

indeed comes to rest over the support, even if other blocks are

stacked between them. An example initial state is shown in

Fig. 2(b). We choose a uniformly randomly distributed length

and horizontal position for the support block, within certain

bounds, as well as its orientation. We place the block to be

dropped with normally distributed horizontal and uniformly

distributed vertical position relative to the top of the support.

The block to be dropped is a square of constant size. Zero to

three potentially interfering blocks are dropped according to

the same distribution in advance of the block drop action to

be classified.

In this experiment, relative position is crucial. Learned trees

often ask whether the dropped block is above the support

block. Questions often follow about the elongation and ori-

entation of the support. For branches identifying a narrow

support block, questions constraining the dropped block’s

relative horizontal variance sometimes appear. Other structural

forms of trees also occur, but often with similar kinds of

questions. Rarely do trees instantiate additional interfering

blocks. Such blocks seem to help as much as hinder, and seem

more just to provide noise to the system. In Fig. 3(b), such

noisy effects are visible. While the highest decision values are

in a narrow horizontal band, areas predicting positive outcomes

are scattered in a large region above the support block.

Both block problems generalize to higher numbers of ob-

jects in test scenes than in training data (p ∼ 0 by one-sample

t-tests), as shown in Fig. 4. In the balance scale case, we

place five to six blocks for “large” scenes. Counting via error

branches does not scale to larger scenes, but classification

scores remain strong, implying that positional questions are

still helpful. For the drop action, large scenes contain four to

five interfering blocks, and even for trees learned in the larger

scenes, such interfering blocks are rarely instantiated.



Tip L/R DropOn(x, y) Pass(x, y)
0.0

0.2

0.4

0.6

0.8

1.0

P
S

S

Small

Small tested on large

Large

Large tested on small

Fig. 4. Mean and standard deviation of classification performance, including
cross testing for scenes with different numbers of objects than occurred during
training. Small scenes contain fewer objects, and large scenes contain more.

B. Soccer Domain

Our second experimental domain is that of the RoboCup 2D

soccer simulator, which at this time we use only for the keep-

away benchmark task [14]. While we do not attempt to scale

to full soccer here, subtasks such as this have an eye toward

learning some of the representations needed for the full game

or other similar activities.

The keep-away game consists of two teams: keepers and

takers. The keepers begin in possession of the ball, and an

episode ends when the takers take possession or the ball goes

out of bounds. The common configuration is 3 vs. 2, meaning

three keepers and two takers, on a 20m by 20m playing area, as

shown in the example state in Fig. 2(c). At each decision step,

the keeper in control of the ball chooses either to hold the ball

or to pass to a chosen teammate. All other players, including

the takers, follow manually scripted behavior. We represent the

pass action as Pass(x, y) where x is the player with the ball

and y is the intended recipient of the pass. For the purposes of

producing training experience, we select the random policy for

the keeper with the ball, meaning a uniformly random choice

among all available pass and hold actions. The objects in the

world are the players themselves. In this work, we do not

include the ball in the scene description.

In keep-away, there is no inherent up or down, unlike the

situation with gravity in the blocks world. On the other hand,

opponents between passer and receiver are important, and the

scaled reframed position mapping function, placing the passer

at the origin and the receiver at (1, 0), commonly appears in

learned trees. In this coordinate frame, potential interceptors

appear near the x axis between coordinates 0 and 1. Exact

boundaries depend on world dynamics, including agent be-

havior. Because interceptors cause failure rather than success,

identifying them depends on negative labeling. Although rare,

some learned trees consider multiple interceptors down the

same branch. Fig. 3(c) shows inherent existential queries of

each interceptor. Interestingly, with large SMRF training sets

(such as the 500 scenes used here), we also see many learned

trees for positive labeling, focusing initially on the position of

the passer or the relative position of the receiver.

For keep-away, “large” scenes are based on 4 vs. 3 play on

2 4 10 20 50
SVM Forest Size

0.0

0.2

0.4

0.6

0.8

1.0

PS
S

Small
Small tested on large
Large
Large tested on small

Fig. 5. Mean and standard deviation of performance as a function of forest
size for the Pass(x, y) action. Half of the trees in each forest are for positive
labeling and half for negative (i.e., varying from 1× 2 through 25× 2).

a 25m by 25m field. As for the blocks world, we again transfer

somewhat to the larger game without retraining (p ∼ 0). While

we do not use our system here for actual agent control, our

transfer from 3 vs. 2 to 4 vs. 3 suggests similar capabilities

to the scalability of the technique of Verbancsics and Stanley

[13]. We show performance in Fig. 4.

Perhaps surprisingly, prediction is actually better on 4

vs. 3 play when transfering from 3 vs. 2 than when learning

directly in the larger game (p ∼ 0 by two-sample t-test). This

seems to be due to a frequent inability of the algorithm to

learn any tree expansions in 4 vs. 3 beyond the initial tree

with one leaf. Such a tree provides only an unconditioned

probability and is therefore uninformative about world state.

Because so many trees learned in 4 vs. 3 are uninformative,

a larger sampling of trees is necessary to ensure that at least

some informative trees are included. Fig. 5 shows this effect,

including the wide variance depending on the quantity of

informative trees sampled. Note, however, that in 3 vs. 2 keep-

away, PSS saturates quickly with relatively small forests. Other

learning contexts evaluated in this paper have similarly quick

saturation.

IV. DISCUSSION AND CONCLUSION

To function in an unstructured world, agents must under-

stand the consequences of their actions. Here, we have demon-

strated a robust method for action prediction on continuous

tasks with arbitrary numbers of objects and implicit relations

between them. This method learns trees using a technique

similar to existentially quantified logic but which supports

stochastic outcomes and also avoids the need for hand-crafted

predicates. We employ a forest of trees to transform an object-

attribute state representation of arbitrary dimensionality into a

robust, fixed-dimension space usable in standard vector-based

machine learning algorithms. We have successfully applied our

method, using a fixed set of mapping functions, to simulated

domains with substantially different dynamics. We have also

shown scalability, without retraining, to scenes with both more

and fewer objects than are present in the training data.

Returning to Siegler’s work on human prediction of bal-

ance scale outcomes [31], SMRF’s tree expansion process



is somewhat reminiscent of Siegler’s progression to more

advanced rules. However, Siegler suggests that humans use

state features outside the kinds of mapping functions that we

can currently apply in SMRF. For example, his rules include

direct counting of blocks on each side of the scale. Both for

group attributes, such as quantity, and for the many other

varieties of potentially useful mapping functions, the number

of compared tree expansions could increase substantially. We

use a wide variety of mapping functions here, to good effect,

but each carries a cost in the form of the multiple comparisons

correction needed for tests of the significance of learned tree

expansions. Learning time also increases with more mapping

functions. Therefore, to increase flexibility, additional sam-

pling and pruning techniques for mapping functions might be

valuable.

In the future, we also intend to use this framework for

actual agent control. One straightforward technique could

be to sample potential choices for action parameters in the

context of a larger planning system. The decision value “heat

maps” shown in Fig. 3 suggest ideas for how this might

work. Alternatively, SMRF trees could provide predicates for

symbolic dynamics learning such as that developed by Pasula

et al. [7] and also implemented by Lang and Toussaint [32].

The fixed-length feature vector could also perhaps be adapted

for use as a basis in approximate reinforcement learning

techniques [8], [11]. Furthermore, extending SMRF to perform

regression on real-valued variables could be fruitful toward the

direct learning of more detailed dynamics.

ACKNOWLEDGMENTS

During this work, Tom Palmer has been supported in part

by a University of Oklahoma Foundation Fellowship. We also

thank Dougal Sutherland, Sam Bleckley, Dan Fennelly, and

Amy McGovern for their past work on SMRF. Lastly, we thank

our anonymous reviewers for their valuable feedback.

REFERENCES

[1] F. Stulp, A. Fedrizzi, L. Mösenlechner, and M. Beetz, “Learning and
reasoning with action-related places for robust mobile manipulation,”
Journal of Artificial Intelligence Research (JAIR), vol. 43, pp. 1–42,
2012.

[2] J. J. Gibson, “The theory of affordances,” in Perceiving, Acting, and

Knowing: Toward an Ecological Psychology, R. Shaw and J. Bransford,
Eds. Lawrence Erlbaum Associates, 1977.

[3] J. Mugan and B. Kuipers, “Autonomously learning an action hierarchy
using a learned qualitative state representation,” in International Joint

Conference on Artificial Intelligence (IJCAI), 2009, pp. 1011–1016.
[4] J. Modayil and B. Kuipers, “The initial development of object knowledge

by a learning robot,” Robotics and Autonomous Systems, vol. 56, no. 11,
pp. 879–890, 2008.

[5] E. Brunskill, B. R. Leffler, L. Li, M. L. Littman, and N. Roy, “Provably
efficient learning with typed parametric models,” Journal of Machine

Learning Research (JMLR), vol. 10, pp. 1955–1988, 2009.
[6] W.-M. Shen, “Discovery as autonomous learning from the environment,”

Machine Learning, vol. 12, pp. 143–165, 1993.
[7] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-

bolic models of stochastic domains,” Journal of Artificial Intelligence

Research (JAIR), vol. 29, pp. 309–352, 2007.
[8] J.-H. Wu and R. Givan, “Automatic induction of Bellman-error features

for probabilistic planning,” Journal of Artificial Intelligence Research

(JAIR), vol. 38, pp. 687–755, 2010.

[9] M. van Otterlo, “A survey of reinforcement learning in relational
domains,” Centre for Telematics and Information Technology (CTIT)
University of Twente, Tech. Rep., 2005.

[10] H. Blockeel and L. De Raedt, “Top-down induction of first-order logical
decision trees,” Artificial Intelligence, vol. 101, no. 1–2, pp. 285–297,
1998.

[11] K. Kersting and K. Driessens, “Non-parametric policy gradients: A uni-
fied treatment of propositional and relational domains,” in International

Conference on Machine Learning (ICML), 2008, pp. 456–463.
[12] S. Natarajan, S. Joshi, P. Tadepalli, K. Kersting, and J. Shavlik, “Im-

itation learning in relational domains: A functional-gradient boosting
approach,” in International Joint Conference on Artificial Intelligence

(IJCAI), 2011, pp. 1414–1420.
[13] P. Verbancsics and K. O. Stanley, “Evolving static representations for

task transfer,” Journal of Machine Learning Research (JMLR), vol. 11,
pp. 1737–1769, 2010.

[14] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu, “Keepaway soccer:
From machine learning testbed to benchmark,” in RoboCup 2005: Robot

Soccer World Cup IX, ser. Lecture Notes in Computer Science (LNCS),
A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi, Eds. Springer
Berlin / Heidelberg, 2006, vol. 4020, pp. 93–105.

[15] J. Z. Xu and J. E. Laird, “Combining learned discrete and continuous
action models,” in AAAI Conference on Artificial Intelligence (AAAI),
2011, pp. 1449–1454.

[16] M. Bodenhamer, T. Palmer, D. Sutherland, and A. H. Fagg, “Grounding
conceptual knowledge with spatio-temporal multi-dimensional relational
framework trees,” School of Computer Science, University of Oklahoma,
Tech. Rep. TR-AIR-1138, 2012.

[17] M. Bodenhamer, S. Bleckley, D. Fennelly, A. H. Fagg, and A. McGov-
ern, “Spatio-temporal multi-dimensional relational framework trees,” in
IEEE International Conference on Data Mining (ICDM) Workshop on

Spatial and Spatiotemporal Data Mining (SSTDM), 2009, pp. 564–570.
[18] J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning relational

probability trees,” in ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD), 2003, pp. 625–630.
[19] A. McGovern, N. Hiers, M. Collier, D. J. Gagne II, and R. A. Brown,

“Spatiotemporal relational probability trees,” in Proceedings of the 2008

IEEE International Conference on Data Mining, Pisa, Italy, December
2008, pp. 935–940.

[20] S. Džeroski, L. De Raedt, and K. Driessens, “Relational reinforcement
learning,” Machine Learning, vol. 43, pp. 7–52, 2001.

[21] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[22] K. V. Mardia, “Statistics of directional data,” Journal of the Royal

Statistical Society, Series B, vol. 37, no. 3, pp. 249–393, 1975.
[23] J. P. Huelsenbeck and K. A. Crandall, “Phylogeny estimation and hy-

pothesis testing using maximum likelihood,” Annual Review of Ecology

and Systematics, vol. 28, pp. 437–466, 1997.
[24] D. Jensen and P. Cohen, “Multiple comparisons in induction algorithms,”

Machine Learning, vol. 38, no. 3, pp. 309–338, 2000.
[25] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance

learning,” in Neural Information Processing Systems (NIPS), 1997.
[26] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

estimation from incomplete data via the EM algorithm,” Journal of the

Royal Statistical Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.
[27] J. H. Friedman, “A recursive partitioning decision rule for nonparametric

classification,” IEEE Transactions on Computers, vol. C-26, no. 4, pp.
404–408, 1977.

[28] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 27:1–27:27, 2011, software available at http://www.
csie.ntu.edu.tw/∼cjlin/libsvm.

[29] D. B. Stephenson, “Use of the “odds ratio” for diagnosing forecast skill,”
Weather and Forecasting, vol. 15, no. 2, pp. 221–232, 2000.

[30] D. Murphy, “JBox2D: A Java physics engine,” accessed August 2,
2010. [Online]. Available: http://jbox2d.org/

[31] R. S. Siegler, “Three aspects of cognitive development,” Cognitive

Psychology, vol. 8, no. 4, pp. 481–520, 1976.
[32] T. Lang and M. Toussaint, “Planning with noisy probabilistic relational

rules,” Journal of Artificial Intelligence Research (JAIR), vol. 39, pp.
1–49, 2010.


