
Multiple Instance Learning via Covariant Aggregation
Artificial Intelligence and Robotics Technical Report #1139

Thomas J. Palmer, Matthew Bodenhamer, Andrew H. Fagg
Symbiotic Computing Laboratory, University of Oklahoma, USA

tompalmer@ou.edu, mbodenhamer@ou.edu, fagg@cs.ou.edu

Abstract

We present a multiple instance learning (MIL) algorithm that
learns ellipsoidal decision boundaries with arbitrary covari-
ance. In contrast to the fixed-length feature vectors of tra-
ditional classification problems, MIL operates on unordered
bags of instances. Commonly, each instance is a feature vec-
tor, and a bag is considered positive if any one of its instances
is positive. In training data, bags are labeled, rather than the
instances themselves. Existing MIL approaches either do not
acknowledge covariances that exist in the feature space or do
not provide simple descriptions of the decision volumes. Our
method learns simple volumes via incremental aggregation of
volume-describing instances from the positive bags. Overall,
we show effective and robust handling on low-dimensional,
covariant learning problems, as well as competitive perfor-
mance on standard MIL data sets.

Introduction
Machine learning, including classification, usually ad-
dresses inputs of fixed-length feature vectors. In contrast,
multiple instance learning (MIL) addresses unordered sets or
bags of instances, where each instance is commonly a fea-
ture vector (Dietterich, Lathrop, and Lozano-Pérez 1997).
Also, binary MIL classification problems commonly con-
sider a bag positive if it has at least one instance that is a
positive example of some concept. In this formulation, MIL
is an existential classification problem:

positive(B) = ∃x∈B positive(x), (1)

where B is a bag, and each x is an instance. MIL there-
fore goes beyond ordinary vector-based learning, in that the
learning algorithm must identify relevant instances while
also learning to classify them.

Common examples of MIL include that of molecule clas-
sification where each molecule has a set of potential fold-
ings, and any one of those foldings might signify the key
behavior of the molecule. Image classification is another ex-
ample, where the task is to identify whether or not an image
contains a particular object, given a certain bag of visual fea-
tures. As a third example, in playing a game of soccer, pass-
ing a ball is likely to fail if there exists an opponent between
the passer and the potential receiver; positions of other op-
ponents might be less relevant.

Early MIL algorithms include axis-parallel rectangles
(APR) of Dietterich, Lathrop, and Lozano-Pérez (1997) and

diverse density (DD) of Maron and Lozano-Pérez (1997).
APR greedily selects discriminating features, choosing min-
imum and maximum bounds for each feature value to en-
sure that at least one instance from each positive bag is in-
cluded. DD defines a probabilistic metric emphasizing in-
stances with many positive and few negative bags nearby.
Using the DD metric, gradient ascent selects the best cen-
tral feature vector and the scaling for each feature. Many
other MIL algorithms and multiple-instance problem formu-
lations (beyond just existential queries) have since been de-
veloped (see Foulds and Frank 2010). These include such
concerns as bag distance metrics and MIL-oriented kernels
and constraints for support vector machines. While many of
these techniques are often quite effective, learned models are
not always intuitively clear to humans. Further, some tech-
niques, including DD and APR, label individual instances as
positive or negative, while others focus exclusively on label-
ing bags as wholes.

In our work, we seek to determine instance labels, as well
as to provide a simple description of the relevant volume in
the feature space, such as those provided by APR and DD.
However, neither APR nor DD acknowledge covariance that
can occur across features. Covariance can arise, for exam-
ple, in color models (such as yellow in RGB space, which
contains equal parts red and green) or in spatial configu-
rations (where interesting cases have some object along a
particular vector). In MIL, simply realigning data to princi-
pal components is not ideal, as the representative instances
might align very differently than the aggregate set of pos-
itive instances. While Zhao et al. (2013) address learning
of covariant distance metrics within MIL, they focus neither
on simple decision volumes nor instance classification. In
this paper, we present a learning technique that directly ad-
dresses the learning of simple, covariant decision volumes
without the need to tune algorithm parameters for individual
learning problems.

In the remainder of this paper, we describe our MIL algo-
rithm, which learns a covariant decision volume via iterative
aggregation of volume-describing instances from positive
bags. We then evaluate our method, on both synthetic and
real-world data sets, against other well-known algorithms
(including DD) that either describe ellipsoidal regions or
else use radial feature kernels.

Procedure 1 Covariant aggregation summary

Begin set K with one initial key point.
Let BR be all positive bags not containing initial point.
Estimate µ and V from K.
LetW be witness points of minDM (x|µ, V) for all bags.
Choose radius r to maximize training set accuracy.
Remember (µ, V, r) as initial best.
While progress seems likely do:

Let BS be M sampled bags from BR.
For each B in BS do:

Let K ′ be K ∪ the witness point from W for B.
Determine µ′, V ′, W ′, and r′ using K ′.
Evaluate training accuracy for K ′.

Update K, µ, V , W , and r for best B sampled.
Update BR to exclude best B.
If new training accuracy ≥ previous best do:

Remember new best (µ, V, r).

Return best (µ, V, r).

Learning Algorithm

We follow the common existential, instance-classifying MIL
formulation established in Equation 1. In this form, the clas-
sifier’s job is to classify individual instances. If any instance
in a bag is found to be positive, then the bag itself is labeled
as positive.

The differentiating aspect of our approach is that of co-
variant decision volumes. This contrasts with the axis-
aligned volumes of APR and DD. Specifically, we describe a
decision volume by its mean µ, covariance V , and radius r.
Parameters µ and V provide the Mahalanobis distance from
the volume center:

DM (x|µ, V) =
√

(x− µ)TV −1(x− µ). (2)

Any instance x within radius r is considered positive:

positive(x|µ, V, r) ⇐⇒ DM (x|µ, V) ≤ r. (3)

Throughout our discussion, we treat instances as feature
vectors within a Euclidean topology. As such, we also refer
to instances as points.

We now describe an algorithm for learning covariant de-
cision volumes from training data with labeled bags. Proce-
dure 1 gives informal pseudocode for the learning process,
and Figure 1 shows several steps of the process using a syn-
thetic data set in which positive bags are more likely to have
at least one instance along the diagonal. In summary, our al-
gorithm seeks a set of key points, K, from which to estimate
parameters µ and V . This process begins with a single key
point from one sampled positive bag. At each iteration, the
algorithm chooses a new key point from an unrepresented
positive bag to add to this set. Given the new potential set
of key points, µ and V are reestimated, and a new radius, r,
is chosen to maximize the training accuracy (similar to the
method of Auer and Ortner 2004). Key point aggregation
continues while training set accuracy across recent iterations
suggests possible improvement.

In the remainder of this section, we elaborate on each step
of the algorithm.

Covariance Estimation

Our algorithm determines a covariant, ellipsoidal decision
volume starting from a single key point. Additional key
points are aggregated iteratively. We calculate µ as the mean
of the key points. However, when there are few key points
relative to the dimensionality, covariance V is poorly de-
fined. To condition the covariance, we begin with an inverse
Wishart prior based on all points from all positive bags. The
inverse Wishart distribution is conjugate prior to the multi-
variate covariance matrix (see Gelman et al. 2013). That is,
given additional observations defining a covariance matrix,
the posterior distribution is still inverse Wishart.

The inverse Wishart distribution has two parameters: a
scale matrix, Ψ, and degrees of freedom, ν. The matrix Ψ
represents a prior observation of covariance scaled by ν pre-
sumed observations. The posterior Ψpost is given by:

Ψpost = ncov(X) + Ψ

where

ncov(X) = (X − E[X])(X − E[X])T (4)

is a scale matrix based on observations as column vectors in
the matrix X .

Usually, the magnitude of the posterior covariance de-
pends on the sum of ν and the number of new observations.
However, in our case, we use our estimate of V only for the
shape and orientation of the decision volume. Radius r is
determined at a later step.

Also, because our learning problem is multiple-instance,
there is no necessary relationship between all instances from
positive bags and the final decision volume. Therefore, we
treat the weight of the prior as independent of both the num-
ber of bags and the number of instances. Instead, we use a
hand-selected parameter, w, to influence the overall weight
of the prior. Our effective posterior covariance is therefore:

Vpost = ncov(K) + w ncov(P)/p, (5)

where K represents the key points and P represents all
points (quantity p) from all positive bags. Figures 1(a) and
1(b) show an initial covariance based entirely on the prior,
while Figures 1(c) and 1(d) show the effect of an increasing
number of key points.

However, the covariance could still be poorly conditioned,
especially in situations of high dimensionality. If the condi-
tion number of the covariance matrix is above a particular
threshold c, we add a constant diagonal to this covariance:

V =

{

Vpost if
∣

∣

maxΛ

minΛ

∣

∣ ≤ c

Vpost +
maxΛ−cminΛ

c−1
I otherwise,

(6)

where Λ is the set of eigenvalues of Vpost, and I is the iden-
tity matrix. This yields a covariance matrix with a maximum
condition number of c.

Decision Volume Radius

To choose decision volume radius r, we follow the opti-
mal ball algorithm of Auer and Ortner (2004). Specifically,
we select the radius that maximizes classification accuracy

4 3 2 1 0 1 2 3 44

3

2

1

0

1

2

3

4

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

(a) Initial key point, with training set accuracy by radius.

4 3 2 1 0 1 2 3 44

3

2

1

0

1

2

3

4

(b) Radius with optimal accuracy.

4 3 2 1 0 1 2 3 44

3

2

1

0

1

2

3

4

(c) Decision volume after four key points.

4 3 2 1 0 1 2 3 44

3

2

1

0

1

2

3

4

(d) At 24 key points, the final decision volume.

Figure 1: Overview of the learning process. Circles indicate points from positive bags, and squares indicate negatives. Pale
circles indicate key points. Larger markers indicate witness points: the nearest point from each bag, given the current mean and
covariance.

across all bags in the training set. Because each bag is clas-
sified as to whether any of its points lie within the decision
volume, only the nearest point to the volume center is of in-
terest. This nearest point is called the witness point for its
bag. We differ from Auer and Ortner primarily in our use
of Mahalanobis distance. Formally, our set of witness points
W is defined as:

W =

{

argmin
x∈B

DM (x|µ, V)

∣

∣

∣

∣

B ∈ B

}

, (7)

where B represents all training bags (both positive and neg-
ative).

To choose radius r, we first sort W by increasing dis-
tance, and then perform a linear scan for maximal accuracy,
also as suggested by Auer and Ortner. Figure 1(a) illustrates
training set accuracy as a function of radius, and Figure 1(b)
shows the corresponding radius maximizing accuracy.

Key Point Aggregation

To begin the learning process, our algorithm samples a sin-
gle positive bag. For each point in the bag, using only the co-
variance prior as V , a radius is chosen to maximize training
accuracy. Iterative covariant aggregation, shown in Figure 1,
begins from the point yielding highest accuracy.

At each aggregation step, the algorithm samples M pos-
itive bags currently unrepresented among the key points,
where M is an algorithm parameter. Further, to keep the
search localized, only bags whose witness points lie inside
the current decision volume are sampled. The witness point
(and no others) from a sampled bag is tentatively added to
the key points, and a new decision volume is constructed.
Among sampled bags, the tentative key point set with high-
est accuracy is selected, and the aggregation process repeats.

Early in the search process, with few key points, the de-
cision volume’s shape is very flexible. It becomes more es-

tablished as the number of key points increases. Therefore,
to terminate the aggregation process, we make a linear least
squares estimate of training accuracy over the most recent A
aggregation steps, where A is an algorithm parameter. We
continue aggregation if the accuracy slope is positive and
if, continuing the current slope through remaining positive
bags, the accuracy would surpass the previous best (includ-
ing across restarts, as discussed shortly). Otherwise, aggre-
gation stops, retaining the model with the highest accuracy.
If decision volumes at multiple iterations have equal accu-
racy, we select the one with the most key points, as this pre-
sumably better describes the volume. At minimum, a full
window of A iterations is required before termination.

As is common for stochastic algorithms, we restart the
learning process multiple times. After each aggregation pro-
cess, we sample another positive bag for the next restart. Al-
gorithm parameter N determines the number of restarts. Of
the N resulting models, the volume with the highest accu-
racy with respect to the training set (or, in case of a tie, the
one with the most key points) is selected as the final volume.

Experimental Evaluation

We test our method on two types of data sets: (1) synthetic
data in two or three dimensions, of which some exhibit co-
variant regions of interest (discussed below), and (2) stan-
dard third-party MIL data sets, which usually have high di-
mensionality and do not necessarily exhibit interesting co-
variance.

We compare against other algorithms with ellipsoidal de-
cision boundaries or ellipsoidal kernels. Techniques with
ellipsoidal boundaries include the non-boosted optimal ball
algorithm of Auer and Ortner (2004), and the DD (Maron
and Lozano-Pérez 1997) and EM-DD (Zhang and Goldman
2001) algorithms. None of these are capable of expressing
covariance, although DD and EM-DD scale original axes.
We use the Weka (Hall et al. 2009) implementations of these
algorithms with default parameters.

We also compare against SVM techniques mi-SVM, MI-
SVM (Andrews, Tsochantaridis, and Hofmann 2002), and
MILES (Chen, Bi, and Wang 2006). For mi-SVM and MI-
SVM, we use (isotropic) RBF kernels, and the MILES fea-
ture set is also based on a radially decaying measure. All
three are therefore capable of expressing arbitrarily nonlin-
ear surfaces, including approximations of covariance. Un-
like other techniques compared here, MILES is a bag-only
classifier rather than an instance classifier, but we include it
because it is simple and performs well. We use the MISVM
package of Doran and Ray (2013) for implementations of
mi-SVM and MI-SVM. We use our own implementation of
the MILES feature set with LIBLINEAR (Fan et al. 2008)
as the SVM classifier, using the L2-loss L1-regularization
option, which differs from the L1-loss of standard MILES.

In testing the algorithms, we are primarily concerned with
performance “in the wild.” That is, we assume that new
learning problems need to be addressed without the opportu-
nity for extensive analysis and parameter tuning. We there-
fore hold all parameters constant for our learning algorithm.
Specifically, we hold constant the progress window size A at

8, covariance prior weight w at 10−1, max covariance con-
dition c at 105, and both number of restarts N and number
of aggregations bags sampled M at 4. We have chosen these
parameters based upon exploratory investigations with some
of the synthetic data sets, as well as the well-known Musk 1
data set (Dietterich, Lathrop, and Lozano-Pérez 1997).

Using a similar amount of exploration, we have also se-
lected parameters C and γ for evaluation of SVM-based
techniques. For C, we use a constant value of 104. We
choose γ = 1/2σ2 using a heuristic calculation for σ as the
mean of the tenth and ninetieth percentiles of all (positive
and negative) inter-point distances in the training set (e.g.,
as used as a starting point by Takeuchi et al. 2006).

Also, in exploration with DD and EM-DD, we found it
necessary to filter the Musk data sets for meaningful learning
results. Specifically, we divide the values of each feature
dimension by their standard deviation. For consistency, we
do this for all data sets for DD and EM-DD. We have not
performed such filtering for other learning methods.

For our synthetic data sets, in addition to the heuristically-
chosen SVM parameters, we also test against tuned SVM
parameters. In these cases, we search across a grid of C
values from 10−4 to 109 (stepping by powers of 10) and
factors of our heuristically-chosen γ, from 2−7 to 27.

Our reported results use different seeds for data gener-
ation, shuffling, and/or stochastic learning than those used
during exploratory evaluation or parameter selection.

Synthetic, Low-Dimensional Data Sets

Our method is designed for use in low-dimensional (often
physical) settings with potentially covariant classification
volumes. We have therefore designed multiple synthetic
learning problems that exhibit interesting characteristics in
two or three dimensions. These data sets consist of the fol-
lowing mixture distributions:

• Covariant 1, depicted in Figure 1, is a 2D problem where
negative instances come from one of two isotropic Gaus-
sians of standard deviation 1 and means of (−2, 2) and
(2,−2), respectively. Positive instances come from a co-
variant Gaussian along the orthogonal diagonal, centered
at (0, 0). Eigenvalues of the positive distribution are 1 and
1/52. All bags have 3 instances, where exactly 1 of the 3
is drawn from the positive distribution for each positive
bag.

• Covariant 2 is the same as Covariant 1, except that there
is a single negative distribution, centered at (0, 0) along
with the positive distribution. This problem is therefore
very noisy.

• Color is a 3D problem where each distribution represents
a red, green, blue, or yellow color in RGB space. The dis-
tributions are based on photographs of printed color pat-
terns, and thus represent data with real-world characteris-
tics. Red, green, and blue are negative distributions. Yel-
low is positive and is inherently covariant in RGB space.
All bags contain 5 instances. Positive bags again contain
exactly one instance drawn from the positive distribution.

• Disjunctive is a non-covariant data set, designed to chal-
lenge our proposed approach by drawing positive in-

stances from a non-compact set. A single negative,
isotropic distribution is centered at (0, 0) with a standard
deviation of 1. The positive distribution is a mixture of
two, isotropic Gaussian distributions, centered at (±3, 0),

each with a standard deviation
√

1/2. All bags contain
ten instances, filling up the negative space thoroughly.
Positive bags contain exactly one instance drawn from ei-
ther side of the mixture (both are equally probable).

For all synthetic data sets in this work, we generate 100
training bags (50 positive and 50 negative) and 100 test bags.
Because the data is synthetic, rather than doing n-fold cross-
validation, we generate 100 independent training and test
sets for calculating statistics.1

Standard MIL Data Sets

In addition to our synthetic cases, we also test using several
standard data sets. Specifically, we use MIL data sets pro-
vided by the Weka project, including most of those evaluated
by Foulds and Frank (2008). We specifically evaluate per-
formance on the well-known data sets Musk 1 and Musk 2;
other chemical classification sets Thioredoxin and Mutage-
nesis Atoms, Bonds, and Chains; the Corel image data sets
Elephant, Fox, and Tiger; and the train direction classifica-
tion problem East-West. From the Weka-distributed sample
files, we exclude the Component, Function, and Process data
sets because they are very large. We also exclude two data
sets for applicability reasons: Suramin, because some in-
stances contain unspecified values and West-East, because it
is a universal rather than an existential problem.

Of the third-party data sets we test, the least number of
dimensions (for Thioredoxin) is 8. Some data sets (such as
Fox or Musk) have more than one hundred. Furthermore, we
have no expectation in advance of which data sets are well
represented by covariant volumes. As such, these standard
sets are outside the designed use case of our method. Still,
we include test results here for comparison with other MIL
algorithms. For synthetic data sets, statistics are computed
using stratified 10-fold cross validation.

Evaluation Method

We perform statistical comparisons using a standard two-
sample, two-tailed t-test using α = 0.05. For cases where
the mean score of our method is better than that of another,
we additionally apply Šidák correction for multiple compar-

isons:2 αcorrected = 1−(1−α)1/n. For our 9 comparisons,
αcorrected ≈ 0.00568. When another method outperforms
ours, we retain the original α. This has the effect of not over-
estimating the performance of our approach, whether our ap-
proach performs better or worse than another.

We report algorithm performance using the Peirce Skill
Score (PSS), which penalizes merely reporting the most
common label (Stephenson 2000). In binary classification,
this score is equivalent to the hit rate minus the false alarm

1For blind review, we include generated data as a submission
attachment. For the final publication, we plan to provide a URL.

2Jensen and Cohen (2000) refer to this correction as Bonferroni
adjustment.

rate. A PSS of 1 is perfect, 0 is random or majority class
assignment, and −1 is a perfectly incorrect labeling. Many
of our evaluated data sets have balanced or nearly-balanced
labels. Therefore, higher PSS here often implies higher ac-
curacy, but not in every case.

Results

As shown in Figure 2, our method, labeled CovAgg, outper-
forms the other methods, with the exception of MI-SVM,
on the three explicitly covariant data sets. Across these sets,
MI-SVM performs about as well as our approach. As further
shown in Figure 4, the default parameter values for MI-SVM
on these sets are already near the best performing parame-
ters. Parameter tuning brings mi-SVM to nearly the same
performance level. It therefore also seems that, even in noisy
settings, our method extracts covariant volumes very effec-
tively. As expected, Optimal ball (“OptBall” in the table),
DD, and EM-DD fail to support covariance, as exhibited by
the low performance.

On the other hand, all methods seem to do fairly well on
the Disjunctive set, perhaps with the exception of EM-DD.
While CovAgg performs below the level of some others,
the difference isn’t great. Most of the techniques, including
CovAgg, extract volumes covering one of the two positive
areas. Notably, mi-SVM and MILES-LL seem capable of
extracting both areas. It is unsurprising that an SVM with an
RBF kernel could accomplish this. Interestingly, MI-SVM,
even with parameter tuning, is unable to find both positive
regions.

Across the standard, third-party data sets, CovAgg per-
forms approximately as well as the other methods. It does
fall behind most techniques on Tiger and behind MI-SVM
and MILES-LL on Elephant. The SVM techniques, on the
other hand, perform poorly overall on the Mutagenesis data
sets using the default parameters. That is, our heuristic SVM
parameter selection works well for some problems, but tun-
ing is needed for others.

Overall, the SVM techniques compare in performance
to ours on covariant problems, but only if tuned properly.
Across the board, the simpler techniques (such as CovAgg
and Optimal Ball) are less likely to completely degenerate,
as do the SVM methods on the Mutagenesis data sets.

Further, Figure 3 shows CPU user-space execution time.
At least for these implementations, mi-SVM and MI-SVM
are usually fast but are occasionally very slow at converg-
ing. In the case of Thioredoxin, the mi-SVM and MI-SVM
runs failed to finish (cut off at over 24 CPU hours). Tuning
SVM parameters requires additional time, unless this cost is
amortized in prior analysis of a data set. Finally, we also find
that DD, as reported by Zhang and Goldman (2001), can be
very slow at times. It should also be noted that each training
and testing of Weka-based implementations includes over-
head Java VM startup time, which is probably most notable
in the faster-running synthetic data sets.

Discussion

We have presented a method for multiple instance learn-
ing of covariant volumes that provides labels for indiviu-

CovAgg OptBall DD EM-DD mi-SVM MI-SVM MILES-LL

Color 0.93± 0.01 > 0.88± 0.01 > 0.88± 0.01 > 0.88± 0.03 > 0.78± 0.03 < 0.95± 0.01 > 0.86± 0.01

Covariant 1 0.76± 0.02 > 0.46± 0.02 > 0.44± 0.02 > 0.38± 0.04 > 0.39± 0.03 0.73± 0.03 > 0.24± 0.03

Covariant 2 0.27± 0.02 > 0.13± 0.02 > 0.06± 0.02 > 0.10± 0.02 > 0.11± 0.02 > 0.21± 0.02 > 0.07± 0.01

Disjunctive 0.27± 0.02 < 0.33± 0.02 < 0.31± 0.02 > 0.19± 0.04 < 0.62± 0.02 0.24± 0.06 < 0.47± 0.03

Musk 1 0.61± 0.18 0.51± 0.22 0.71± 0.17 0.71± 0.19 0.64± 0.15 0.60± 0.21 0.63± 0.12

Musk 2 0.56± 0.11 0.49± 0.14 0.58± 0.23 0.69± 0.15 0.43± 0.18 0.49± 0.16 0.59± 0.19

Muta Atoms 0.54± 0.14 0.47± 0.19 0.34± 0.21 0.20± 0.20 > 0.00 > 0.17± 0.15 > 0.09± 0.15

Muta Bonds 0.46± 0.15 0.45± 0.20 0.36± 0.15 0.35± 0.15 > 0.00 > 0.00 > 0.15± 0.11

Muta Chains 0.42± 0.14 0.31± 0.14 0.50± 0.18 0.23± 0.23 > 0.00 0.28± 0.15 0.47± 0.17

Thioredoxin 0.13± 0.14 0.30± 0.21 0.34± 0.28 0.18± 0.22 - - 0.00

East West 0.00± 0.45 < 0.60± 0.35 0.10± 0.50 0.20± 0.43 0.00 0.40± 0.47 0.30± 0.33

Elephant 0.46± 0.10 0.58± 0.12 < 0.60± 0.09 0.50± 0.07 0.58± 0.13 < 0.71± 0.09 < 0.66± 0.11

Fox 0.15± 0.09 > −0.06± 0.08 0.29± 0.13 0.25± 0.17 0.12± 0.11 0.10± 0.13 0.18± 0.11

Tiger 0.17± 0.14 0.23± 0.13 < 0.47± 0.15 < 0.44± 0.14 < 0.58± 0.11 < 0.66± 0.10 < 0.52± 0.11

Figure 2: Mean PSS, using constant/heuristic parameter choices for each learning method. Bounds, where variance occurred,
represent 95% confidence intervals presuming a t-distribution. Inequalities, where present, indicate a statistical difference
between CovAgg and the indicated method. The symbol ‘-’ indicates aborted runs.

CovAgg OptBall DD EM-DD mi-SVM MI-SVM MILES-LL

Color 0.47± 0.01 < 1.18± 0.02 < 4.23± 0.16 < 1.34± 0.02 < 6.04± 1.14 0.49± 0.02 > 0.19± 0.00

Covariant 1 0.57± 0.02 < 0.92± 0.01 < 1.77± 0.06 < 0.85± 0.01 < 2.96± 0.46 > 0.20± 0.01 > 0.15± 0.00

Covariant 2 0.44± 0.01 < 1.01± 0.01 < 2.20± 0.09 < 0.93± 0.02 < 1.54± 0.33 > 0.28± 0.03 > 0.16± 0.00

Disjunctive 0.44± 0.01 < 1.31± 0.01 < 10.9± 0.5 < 1.47± 0.01 < 32.6± 5.2 < 6.22± 0.70 < 0.58± 0.00

Musk 1 10.2± 0.3 > 2.25± 0.07 < 16.6± 4.0 < 22.5± 5.4 > 0.56± 0.15 > 0.43± 0.08 > 0.32± 0.02

Musk 2 36.0± 5.3 > 10.6± 0.4 < 1358± 527 < 265± 111 < 4157± 1244 < 1557± 199 < 47.1± 3.6

Muta Atoms 0.75± 0.04 < 2.29± 0.05 < 7.31± 0.73 < 1.96± 0.07 < 9.74± 1.77 < 5.52± 0.72 < 1.33± 0.05

Muta Bonds 1.26± 0.08 < 4.25± 0.10 < 32.1± 18.1 < 3.68± 0.46 < 309± 56 < 15.1± 1.3 < 5.14± 0.06

Muta Chains 2.08± 0.14 < 6.08± 0.12 < 125± 25 < 5.43± 0.68 < 1775± 321 < 27.4± 5.4 < 9.30± 0.17

Thioredoxin 4.21± 0.49 < 8.56± 0.45 < 681± 68 < 14.4± 1.7 - - < 121± 2

East West 0.24± 0.01 < 0.80± 0.03 < 2.91± 0.31 < 1.42± 0.05 > 0.09± 0.03 > 0.05± 0.01 > 0.02± 0.00

Elephant 24.3± 2.9 > 4.58± 0.13 < 219± 32 < 155± 22 < 70.0± 28.4 > 5.46± 0.92 > 5.04± 0.10

Fox 16.8± 1.5 > 4.27± 0.04 < 126± 17 < 92.0± 34.3 < 86.8± 26.8 > 7.44± 1.95 > 3.50± 0.02

Tiger 19.3± 2.3 > 4.59± 0.16 < 72.9± 14.5 < 70.4± 20.2 53.5± 26.5 > 5.71± 0.64 > 3.47± 0.06

Figure 3: Mean training and prediction time in seconds, using constant/heuristic parameter choices for each learning method.
Bounds, where variance occurred, represent 95% confidence intervals presuming a t-distribution. Inequalities, where present,
indicate a statistical difference between CovAgg and the indicated method. The symbol ‘-’ indicates aborted runs.

mi-SVM* MI-SVM* MILES-LL*

Color 0.92± 0.01 < 0.95± 0.01 > 0.90± 0.01

Covariant 1 0.76± 0.02 0.78± 0.01 0.73± 0.02

Covariant 2 > 0.20± 0.02 0.22± 0.03 > 0.22± 0.02

Disjunctive < 0.65± 0.02 < 0.35± 0.06 < 0.56± 0.02

Figure 4: Mean PSS, using SVM parameters chosen by grid
search. Bounds represent 95% confidence intervals presum-
ing a t-distribution. Inequalities, where present, indicate a
statistical difference relative to CovAgg.

dal instances in a bag and uses a simple, parametric rep-
resentation for the decision volume. Without performing
problem-specific parameter tuning, our approach performs
particularly well relative to other, standard MIL approaches
on problems in which the data exibit covariant properties.
Our approach also performs competitively on typical MIL
data sets. As such, we believe our algorithm to be a viable
and effective MIL approach, especially when robustness to
covariance is required, and when parameter turning is not a
practical option.

Going forward, we are interested in the application of
MIL methods to learning in multi-attribute, relational set-
tings (e.g., Blockeel and De Raedt 1998; Bodenhamer et al.
2009). In these contexts, the MIL classifier is applied re-
peatedly for each potential relational question, and must be
efficient and robust in finding effective decision volumes.
While algorithms such as MI-SVM could perform better for
some specific problems, the additional time required to se-
lect problem-specific parameters and the potential complex-
ity of the resulting decision volumes could yield these alter-
native approaches ineffective in the broader relational set-
tings.

In future work, we expect to apply our method to non-
Euclidean topologies, such as orientation in two or three di-
mensions. While we have emphasized covariant aggrega-
tion here, the technique is easily applicable to other distance
metrics.

References

Andrews, S.; Tsochantaridis, I.; and Hofmann, T. 2002.
Support vector machines for multiple-instance learning. In
Advances in Neural Information Processing Systems (NIPS),
577–584.

Auer, P., and Ortner, R. 2004. A boosting approach to mul-
tiple instance learning. In European Conference on Machine
Learning (ECML), volume 3201 of Lecture Notes in Com-
puter Science (LNCS). Springer Berlin / Heidelberg. 63–74.

Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial Intelligence
101(1–2):285–297.

Bodenhamer, M.; Bleckley, S.; Fennelly, D.; Fagg,
A. H.; and McGovern, A. 2009. Spatio-temporal multi-
dimensional relational framework trees. In IEEE Interna-
tional Conference on Data Mining (ICDM) Workshop on
Spatial and Spatiotemporal Data Mining (SSTDM), 564–
570.

Chen, Y.; Bi, J.; and Wang, J. Z. 2006. MILES: Multiple-
instance learning via embedded instance selection. IEEE
Transactions on Pattern Analysis and Machine Intelligence
28(12):1931–1947.

Dietterich, T. G.; Lathrop, R. H.; and Lozano-Pérez, T.
1997. Solving the multiple instance learning problem with
axis-parallel rectangles. Artificial Intelligence 89(1–2):31–
71.

Doran, G., and Ray, S. 2013. A theoretical and empirical
analysis of support vector machine methods for multiple-
instance classification. Machine Learning (in press).

Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and
Lin, C.-J. 2008. LIBLINEAR: A library for large linear clas-
sification. Journal of Machine Learning Research (JMLR)
9:1871–1874.

Foulds, J., and Frank, E. 2008. Revisiting multiple-instance
learning via embedded instance selection. In Australasian
Joint Conference on Artificial Intelligence, volume 5360 of
Lecture Notes in Computer Science (LNCS). Springer Berlin
Heidelberg. 300–310.

Foulds, J., and Frank, E. 2010. A review of multi-instance
learning assumptions. The Knowledge Engineering Review
25(1):1–25.

Gelman, A.; Carlin, J. B.; Stern, H. S.; Dunson, D. B.; Ve-
htari, A.; and Rubin, D. B. 2013. Bayesian Data Analysis.
Chapman and Hall/CRC.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
An update. SIGKDD Explorations 11(1):10–18.

Jensen, D. D., and Cohen, P. R. 2000. Multiple comparisons
in induction algorithms. Machine Learning 38(3):309–338.

Maron, O., and Lozano-Pérez, T. 1997. A framework for
multiple-instance learning. In Advances in Neural Informa-
tion Processing Systems (NIPS), 570–576.

Stephenson, D. B. 2000. Use of the “odds ratio” for diagnos-
ing forecast skill. Weather and Forecasting 15(2):221–232.

Takeuchi, I.; Le, Q. V.; Sears, T. D.; and Smola, A. J.
2006. Nonparametric quantile estimation. Journal of Ma-
chine Learning Research (JMLR) 7:1231–1264.

Zhang, Q., and Goldman, S. A. 2001. EM-DD: An improved
multiple-instance learning technique. In Advances in Neural
Information Processing Systems (NIPS), volume 2, 1073–
1080.

Zhao, H.; Cheng, J.; Jiang, J.; and Tao, D. 2013. Mul-
tiple instance learning via distance metric optimization. In
IEEE International Conference on Image Processing (ICIP),
2617–2621.

